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ABSTRACT 

A GENERAL THEORY OF EMERGENCE IN ENGINEERED SYSTEMS 
 

John J. Johnson IV 
Old Dominion University, 2016 

Director: Andres Sousa-Poza 

Engineered systems are designed to satisfy specific needs and produce 

explainable/predictable results.  But despite this intent, engineered systems don’t always 

do what they are designed to do once they are implemented.  Some engineered systems 

produce properties and behaviors that are not clearly explainable or predictable by the 

properties of their components.  This is a problem recognized in government and private 

sectors as having broad ranging financial and security consequences.    It is also the 

essence of the emergence phenomena.   A review of the literature reveals two significant 

gaps in the current body of knowledge on emergence as it pertains to engineered systems: 

1) no conceptual model that reconciles conflicting aspects of emergence; and 2) no 

explanation of system factors and their relationships that affect the occurrence of 

emergence. The gaps are addressed in this dissertation through research using a 

methodology that incorporates rationalist inductive methods with modeling & simulation 

frameworks.  Where other research and models of emergence focus on entity or agent 

behavior; the research in this dissertation takes place from a systems perspective.   The 

focus is on system level behaviors and system factors as they pertain to the occurrence of 

emergent effects.   Generally accepted thermodynamic principles and axioms for 

chemical reactions are used to develop scientific analogies for factors in engineered 

systems.  A theory is derived consisting of six factors that are determinants in a 
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mathematical model of a tipping point at which emergent effects will occur in engineered 

systems: 1) interoperability; 2) concentration of components; 3) component degrees of 

freedom; 4) variety of system regulators; 5) rate of information received vs transmitted 

by the system; and 6) relative amount of information received by the system vs a 

threshold for change in the system configuration.   The theory and its implications are 

explored in simulation experiments.  Other products and contributions of the research 

include: a) an ontology of emergence concepts; b) a unifying definition of emergence; 

and c) a system dynamics model of emergence in engineered systems. 
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CHAPTER 1 

INTRODUCTION 

 

The term emergence often brings to mind a familiar paradox, “…the whole is greater than 

the sum of its parts.”  The actual statement, “…the whole is something beside the parts,” is from 

Aristotle’s discussion on the nature of material things and the substances of which they are 

composed (Aristotle, 350 B.C.).   The implication is that material things have something that 

their parts don’t have.  But how can this be? After all, some might argue that parts are mere 

fractions of a whole; and a whole is completely composed of its parts.  Systems engineers count 

on Aristotle’s statement being true.  Engineered systems (i.e., systems produced by humans) are 

ensembles that are designed to produce effects (behaviors, properties, qualities, etc.) that fulfill a 

purpose that cannot be satisfied by individual parts alone (Ackoff, 1971; Checkland, 1999; 

Blanchard & Fabrycky, 2006). Aristotle might say that engineered systems are wholes that are 

something beside their parts.  The other basic aspect of the emergence concept is the apparent 

absence of traceability between the nature of parts in a system and the system effects (Lewes, 

1875).  This is the aspect of the emergence concept that presents a potential problem for 

engineers and stakeholders in engineered systems.  

System effects that are not traceable (i.e., explainable in terms of or derivable from its 

parts), are not intentional consequences of design. “Classical” engineering design seeks to 

eliminate unexpected and unintended effects (Mina et al., 2006).  While some unintended system 

effects may indeed be serendipitous, there is also a risk that unintended consequences will 

negatively impact the intended purpose of the system.  The problem of unintentional system 
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effects is recognized in government and private sectors as having broad ranging financial and 

security consequences: 

• Carnegie Mellon (Schroeder & Gibson, 2010). A study of high-performance-

computing systems at Los Alamos National Labs found that 20-30% of the root 

causes for failures was unknown and untraceable.  Designing highly dependable 

systems requires a better understanding of system failures. 

• DoD Missile Defense System (Willman, 2014).  Ongoing flight test failures costing 

100’s of millions of dollars and creating doubts about the $40B system. “…scientists 

have been hard-pressed to pinpoint the causes of the failures”. 

• National Science Foundation (Guckenheimer & Ottino, 2008).   Participants in a 

workshop on Foundations for Complex Systems Research concludes that there is a 

need to “…preclude undesirable emergent behavior and to generate or exploit 

desirable ones”.   A recommended strategy is to seek a means to anticipate “tipping 

points” in which abrupt changes in system performance will occur. 

• American Society of Mechanical Engineers (ASME, 2011).  An initiative to 

address Complex Systems Failure, points to a need to manage risk and design 

systems to reduce likelihood of cascading failures without excessively increasing 

system cost. High priority is placed developing risk analysis methodology, models, 

and tools. 

• National Institute of Standards and Technology (NIST, 2016). A conclusions 

from the Measurement Science for Complex Information Systems Project is “There 

is no science today that offers the fundamental knowledge necessary to design large 
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complex networks [so] that their behaviors can be predicted prior to building them.“   

This situation threatens national security and cost billions of dollars. 

 

The current body of knowledge on emergence abounds with theories about its nature, yet 

there are persistent gaps that support the need for additional theories.   Silberstein and McGeever 

(1999), Corning (2002), Campbell (2015) and Sartenaer (2016) are among those that discuss 

persistent gaps, supporting the need for a theory of emergence that: 1) provides a unifying and 

unambiguous definition of the concept; and 2) explains its causal factors. The need is especially 

true for engineered systems because they are expected to produce intentional consequences 

(behaviors, properties, qualities, etc.) of their design. Take a jet or a ship for instance.  Despite 

potentially millions of very complicated and interwoven components, velocity and direction of 

the jet or the yaw and buoyance of a ship can be explained (i.e., described in detail) in terms of 

its components and interactions.  Even when these systems fail to perform as intended, the 

failure effect is typically explainable in terms of its components and interactions.  This is not the 

case for all properties and behaviors of all systems.  Consider the lateral vibration phenomena in 

London’s Millennium Footbridge. Unexpected synchronization of pedestrian footsteps and 

bridge motion accumulated to a point that required the closing of the bridge due to excessive 

lateral vibration (Dallard et al., 2001).  Somehow the interaction between the pedestrians and the 

bridge created an unexpected and unexplainable effect (lateral vibration).  Lateral vibration due 

to foot traffic is a repeatable phenomenon that occurred on multiple occasions with other bridges 

for over 30 years.  However, it was not explained until years after it was observed in the 

Millennium Footbridge case (Macdonald, 2008).  After the phenomena was explained it was 

possible to predict it, and solutions to prevent or mitigate future occurrences were implemented.  
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The apparent unexplainable nature of the lateral vibration phenomena is an example of emergent 

effects in an engineered system. 

These examples raise the questions that are the focus of the dissertation:  what are the 

factors in engineered systems that affect the occurrence of emergents; and what are their causal 

relationships?  The importance of the questions is emphasized in Checkland’s (1999) plan for a 

systems movement: 

“…to search for conditions governing emergent properties and a spelling out of the 

relations between such properties and the wholes which exhibit them” 

The movement has the potential to change how systems are designed and managed.  If causal 

factors of systems that contribute to emergent effects are known: 1) the risk that unexplainable 

effects will occur could be assessed; 2) design alternatives with fewer causal factors could be 

selected; 3) if the causal factors are actually capable of being adjusted (i.e., they are 

mechanisms), then the likelihood of unexplainable effects could be controlled; and 4) to the 

extent emergent effects are positive, their occurrence could be encouraged. These are 

motivations for developing a general theory of emergence in engineered systems and the 

inspiration for this dissertation. 

One way to answer a question is to look at something we know and use it to explain 

something we don’t (i.e., analogical reasoning).   The research in this dissertation takes this 

approach by using the axioms and generally accepted theories from thermochemistry (a branch 

of thermodynamics) to build a simulation model to explain causal factors in engineered systems 

that affect emergence. Thermochemistry was selected as the medium of study for several 

reasons: As a branch of thermodynamics, thermochemistry is the study of transformations (i.e., 

changes) in chemical systems.  Initial findings show similarities between thermochemical 
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transformations and the transformation from explainable to unexplainable effects in engineered 

systems.  Thermochemistry concepts are very well established and can be found in any high 

school chemistry textbook.  Thermochemistry also happens to be the point of origin for the 

original concepts of emergence (Mill, 1846; Lewes, 1875).  A rational research methodology is 

applied to take what is already known about thermochemistry and use it to help explain what we 

don’t know about emergence in engineered systems.  The methodology includes: 1) a detailed 

literature review to define the nature of the emergence phenomena and systems where it occurs; 

2) steps to ensure correspondence with thermochemistry’s generally accepted axioms / laws and 

the concepts, theories and models; and 3) a structure/framework to ensure the logical coherence 

of the propositions, models and theories that are developed from the research.      

Chapter One of the dissertation defines the problem of emergence; justifies the 

significance of the research; and formulates a research question and provides an overview of the 

research that takes place.  The research methodology and its supporting methods and frameworks 

are discussed in Chapter Two, including a formal method for analogical reasoning, a theory 

building framework, and a modeling and simulation framework to ensure the correspondence 

and coherence of the theory produced by the dissertation research.   A detailed literature review 

of the emergence phenomena is presented in Chapter Three.  Prevailing theories are discussed 

and synthesized into common themes that characterize the nature of emergence and systems 

where it occurs.  The results from the literature review are used to develop the concept of 

emergence for the research that will take place.  The concept is developed in Chapter Four using 

thermochemistry as a medium of study.  The chemical system concepts are summarized and a 

conceptual model of endothermic reactions in chemical systems is presented.  A theory of 

emergence in engineered systems is derived in Chapter Five from scientific analogies to the 
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thermochemistry concepts.  A simulation model based on the theory is then constructed and 

studied through experimentation in Chapter Six.    The model is used to explore the ideas and 

concepts of the theory, and test it theoretical propositions.  Conclusions and recommendation for 

potential applications and future research are presented in Chapter Seven. 

 

1.1 Thesis Statement   

The potential for emergents in engineered systems makes designing, managing, and 

operating them less tenable for its stakeholders.  To address this risk, a general theory is required 

that defines emergence and explains its causal factors in engineered systems.   

 

1.2 Research Significance 

There is no shortage of theories of emergence. However, it is still not clear what the term 

[emergence] denotes or, more important, how emergence emerges (Corning, 2002). The 

significance of this research is a contribution toward answering these persistent questions.    

Corning is not alone in pointing out the “multifarious,” “confusing,” and “contradictory” 

claims about emergence:  

• Silberstein and McGeever (1999) discusses the confusion of emergence as a concept 

where system properties are in no way determined by or derivable from their 

constituents, vs. properties that are actually determined by constituents but are very 

difficult in reality to derive.  

• Corning (2002) list examples of “ambiguous” and “contradictory” claims from theorists 

and the science community, such as:  the relevance vs irrelevance of perception by an 
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observer; whether or not emergents are the irreducible or predicable; the requirement for 

interactions vs a change in scale of observation. 

• Campbell (2015) identifies issues in the concepts of emergence that need clarification, 

including: what it means to emerge; what it is that emerges (entities, properties, 

behaviors, etc.);  what constitutes an emergent property as novel; and are the spacio-

temporal aspects of emergence synchronic, diachronic, or both. 

• Sartenaer (2016) describes the insufficiency or “emptiness” in emergence concepts in 

three categories: 1) positivity (defining what emergence is not rather than what it is); 2) 

consistency (a system simultaneously determined yet unexplainable by its constituents is 

contradictory); and 3) triviality (the unqualified definition that emergents are properties 

of wholes that are not properties of parts can be an obvious observation with 

insignificant consequences).  

An initial review of the literature on emergence supports the assertions that there are gaps 

in the body of knowledge on emergence.  A sample of the prevailing theories that are frequently 

referenced in the literature are summarized in Table 1. 
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Source Theory / Definition Causal Factors 

Lewes, 1875  Emergents are system effects caused by the coalescence of 

dissimilar components, and is not traceable/reducible to the steps of 

the coalescence process.  

…coalescence of 

dissimilar 

components 

Broad, 1925 Emergents are behaviors theoretically unexplainable by their 

components due to lack of knowledge of component microscopic 

structures and “mathematical incompetence.” 

… lack of component 

knowledge; 

“mathematical 

incompetence”. 

Ashby, 1956 Emergents are properties that are not shared by the system and its 

components due to large variations in the size of the parts relative to 

the size of the system (i.e., scale).  

…large part to 

system size variations  

Crutchfield, 

1994 

Emergence is the dynamic interaction of subsystems and 

components that create new patterns that produce new system 

capabilities / functions. 

… dynamic 

interaction of 

subsystems 

Bedau, 1997 Emergents are properties possessed by macro objects that are caused 

by interwoven non-linear relationships between their micro 

constitutes, but cannot be posed by them and are only derivable by 

simulation (i.e., apparently underivable).   

… interwoven non-

linear relationships 

Holland, 

J.H., 1998 

Emergents are recognizable, persistent, and reoccurring patterns that 

are not predicated due to the inherent difficulty of calculation and the 

size of potential state space. 

… inherent difficulty 

Table 1. Prevailing Theories of Emergence 
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Table 1 (continued) 

Bar-Yam, 

2004 

Emergents are properties of the system that cannot be inferred from 

observations of components and are the result of system level 

constraints (Bar-Yam, 2004). 

… system level 

constraints 

Maier, 2015 Emergents are properties possessed by an assemblage of things that 

are not possessed by its members; that vary in degree of derivability 

in models; and is the result of interactions between components and 

time scales. 

… interactions 

between components 

 

 

The initial survey in Table 1 highlights the variety of definitions and contributing factors 

that are found in the literature.  On the surface, several conflicts seem apparent and raise 

questions as to what emergents are:  1) properties, patterns, or behaviors; 2) new or 

reoccurring/persistent; 3) originates from the bottom up or the top down; 4) provisional or 

permanent; 5) observer dependent or independent.  An equally wide range of assertions about the 

factors that cause emergence is also observed, including: coalescence of components; lack of 

knowledge; evolution; “mathematical incompetence;” interactions; variations in the size; and 

inherent difficulty, just to name a few. While these and other available definitions of emergents 

provide some insight into the concept, ambiguity persists and causal factors that affect the 

occurrence of emergents are not clearly identified and explained. 

 The need for a theory to address the identified gaps is further amplified by proposed 

research agendas from commercial industries, defense companies and academia: 

 Mogul (2006) focuses on problems created by emergent behavior (“misbehavior”) in 

complex software systems.   His objective is to gain a better understanding of emergent 
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misbehavior in complex software systems.  He posits that this understanding is a 

prerequisite for improved design strategies and system management.  He proposes several 

research agenda to support his objective including the development of … “a taxonomy of 

frequent causes of emergent misbehavior.” 

 Valerdi et al. (2008) discuss the risks to the resilience of System of Systems (SoS) that is 

posed by emergent behavior.   They recommend research that will help determine the 

architectural factors of products that will make them less likely to demonstrate emergence 

due to the interactions among elements of individual systems in the SoS.   They also 

identify the potential benefits and need to develop “Guided Emergence” architecture 

strategies.  These are strategies “to steer emergent behavior” in desired directions to 

achieve mission objectives and goals. 

 Bloebaum and McGowan (2012) discuss the challenges of unintended consequences 

(i.e., emergents) in Large-Scale Complex Engineered Systems (LSCES) such as aircraft 

carriers, nuclear power plants, spacecraft, submarines’ water supply systems, electric 

power grids, offshore oilrigs, and air and ground transportation systems.  They identify as 

a research opportunity the need to “…fully understand, manage, and exploit the inherent 

interactions in the system (from people, organizations and the physics), in a rigorous 

manner grounded in theory, so as to avoid unanticipated consequences during the design 

and development process.” 

 Rainey and Tolk (2015) question the acceptance of positive emergence as “…a 

welcomed coincident.”  Alternatively, they challenge the engineering community to 

conduct research that leads to emergence as the intentional “…product of engineering 

efforts.”  Rather than steering inherent emergence toward some benefit as in “guided 
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emergence” strategies; engineering emergence involves designing systems to actually 

produce beneficial emergent behaviors and properties.  

The common thread in these agenda items is their call for research that leads to “… [gaining] a 

deeper understanding…” of emergence and particularly how it occurs in engineered systems.    

Developing formal models of emergence can help us understand emergence in 

engineered systems and move toward closing the identified gaps.  Conceptual models provide a 

coherent set of claims, assumptions, and constraints to reduce (if not eliminate) the concept’s 

ambiguity.  A simulation model would enable the study of causal factors in engineered systems 

that affect the occurrence of emergents.  Developing such an understanding would open the door 

to changing how systems are designed and managed.   If causal factors that contribute to the 

occurrence of emergent effects in engineered systems are identified: 1) the risk that emergent 

effects will occur could be assessed; 2) design alternatives with fewer causal factors could be 

selected; 3) if the causal factors are actually capable of being adjusted (i.e., they are 

mechanisms), then the likelihood of emergent effects could be controlled; and 4) to the extent 

emergent effects are positive, their occurrence could be encouraged.  For these reasons, 

understanding the mechanisms of emergence in engineered systems is an important and worthy 

effort for research. 

 

1.3 Research Question 

The research in this dissertation addresses the emergence problem in the context of 

engineered systems.  Emergence is essentially a phenomenon in systems that brings about 

unintended system effects; specifically effects that are not apparently explained by the system 

parts and their relationships.   In order to defend against or exploit the emergence phenomenon, it 
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would be beneficial to have a general theory for engineered systems that unambiguously defines 

emergence and explains causal factors in engineered systems that affect the occurrence of 

emergent effects.   The author posits that the theory resulting from the research will have 

implications on the operation and design of engineered systems.  The research in this dissertation 

intends to develop such a theory for engineered systems by answering the following research 

question: 

What are the factors in engineered systems that affect the occurrence of emergence, and 

how are the factors related? 

The research will provide: 

 A conceptual model of emergence in engineered systems that resolves conflicting claims 

and assumptions. 

 A simulation model that enables the study of causal factors in engineered system that 

affect the occurrence of emergents. 

 Definitions and propositions for emergents in engineered systems. 

Delimitation: 

The research is a study of system level behaviors and characteristics rather than those of 

entities or agents.  The focus of the research is limited to epistemological explanations of causal 

factors in engineered systems: identification, definition, and relationships.  It does not include the 

ontological explanations of the emergents themselves: truth of their existence, particular qualities 

they display.  The research is further limited to systems produced by humans; those that include 

people, processes, materials, and equipment.  Systems that naturally occur in the environment are 

not addressed by this research.   
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1.4 Medium of Study 

Research in this dissertation is conducted to address the problem of emergence in 

engineered systems.  Given the gaps in the current body of knowledge, an alternative body of 

knowledge was identified that can serve as a medium of study to further investigate the problem. 

The research uses a rationalist inductive approach according to Sousa-Poza, et al. (2008). In 

applying this approach, the accepted theories for phenomenon in the medium of study are used to 

inform the development of a new theory for the problem phenomenon or phenomena of interest.  

The research in this dissertation follows this approach by using the axioms and generally 

accepted theories from thermodynamics; more specifically thermochemistry.  Initial reasons for 

selecting thermochemistry as a medium include a broad applicability as a source of analogies to 

explain concepts; a well-established precedence in explanations of emergence; and general 

coherence with characteristics of engineered systems. 

Klein and Nellis (1991) posit that the simplicity of its basic postulates makes 

thermodynamics applicable to “…any discipline technology, application, or process.” Ott and 

Boerio-Goates (2000) expresses the same sentiment and reference Albert Einstein’s impression  

of thermodynamics: “A theory is the more impressive the greater is the simplicity of its premises, 

the more different are the kinds of things it relates and the more extended the range of its 

applicability. Therefore [is] the impression which classical thermodynamics [has] made upon 

me.”  The simplicity and applicability of thermodynamics makes it a rich source for analogies 

that are used for their explanatory power in a variety of ways. Table 2 lists a sample of analogies 

based on thermodynamic concepts. 
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Reference Application Thermodynamic Concept 

Sawada & Caley, 

1985 

Education systems and the process of 

learning. 

Entropy and thermodynamic 

equilibrium. 

Dyer, 1996 Effective scholarly conversations. Exothermic / endothermic 

reactions. 

Kotov, 2002 Dynamics of human culture. Biogeochemistry and dissipative 

structures. 

Chassin et al., 2004 Control of complex adaptive systems. Carnot cycle. 

Sergeev, 2006 Economic equilibrium in financial 

markets. 

Entropy and thermodynamic 

equilibrium. 

Kauffman & Clayton 

(2006) 

Emergence of order in biological 

systems 

Chemical reactions 

Dyer, 2007 Emergence of individual learning. Change in enthalpy. 

Bratianu & 

Andriessen, 2008 

Knowledge as energy. Mechanical and thermal energy. 

Chew & Choo, 2008 Resistance to changing a banking 

system. 

Changing states of matter. 

Pati, 2009 Stress management and innovation in 

business systems. 

Enthalpy and the conservation of 

energy. 

Ortega & Braun, 

2013 

Rational decision making and maximum 

utility. 

Free energy and entropy. 

Kovacic (2013) Effect of shared awareness within 

multiple Cognitive Representations of 

Reality. 

Percolation theory (i.e., statistical 

mechanics). 

Table 2. Thermodynamic Analogies 
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In each of the examples in Table 2 the analogy relies on the consistency of the thermodynamic 

behavior and the broad acceptance of its governing principals to explain non-thermodynamic 

phenomena. 

In addition to its broad variety of applications, there is a well-established precedence 

(over 150 years) for using principles of thermodynamics and specifically thermochemistry, to 

explain the concepts of emergence in systems.  Thermochemistry is the point of origin for the 

original concepts of emergence (Mill, 1846; Lewes, 1875).  Mill (1846) uses the thermochemical 

combination substances (i.e., chemical reactions) as a contrast to his Composition of Cause 

principle.  Composition of Cause states that the joint effect of several causes is the same and the 

sum of their separate effects.  Chemical reactions produce “special and exceptional” cases where 

Composition of Cause does not apply because the joint effect of the combination is not the same 

as the sum of the separate effects of the substances.   Though not specifically called emergence, 

this is considered one of the early expressions of the emergence concept.   Lewes (1875) uses 

many examples of chemical reactions to explain the nature of emergent effects where some 

combinations produce properties that are different from the properties of their parts.  One 

example he cites is the orange color produced from the combination of colorless oxygen and 

colorless nitrogen.   The orange color is novel (i.e., new) and not traceable to the properties of its 

oxygen and nitrogen components or the process of combining them.  

A review of the literature also reveals that thermochemical systems and engineered 

systems share several common characteristics (see Table 3).  
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Characteristic Engineered Systems  Chemical Systems 

Type of system 

(naturally occurring 

vs produced by 

humans)  

Produced by humans Produced by humans 

Structure Engineered systems structures that are 

composed of lower levels of parts that 

combine to form a whole (i.e., a 

system) with novel properties and 

behaviors that evolve over time 

(Morgan, 1929). 

Chemical species (or systems) are 

hierarchal structures composed of 

thermochemical elements arranges in a 

certain configuration to form the 

species (Fogler, 2011). 

Micro / Macro 

Relationship 

When emergence occurs in an 

engineered system, components 

combine in a way to produce new 

system level properties and behaviors 

while the properties and behaviors of 

the components remain the same. 

(Ablowitz,1939; Lewes, 1875) 

Chemical elements combine to produce 

new chemical identities (i.e., a set of 

chemical properties) that define new 

chemical species while the identity of 

the elements is preserved (Matsoukas, 

2013). 

Dynamics Changes in the exchange of 

information at the micro levels of the 

systems causes changes in interactions 

of the components of the system 

leading to new systems properties and 

behaviors (Johnson IV et al., 2013). 

Changes in the internal energy of the 

chemical species (i.e., enthalpy) causes 

changes in molecular order (entropy) 

resulting in the emergence of a new 

chemical species with new chemical 

identities (Dyer, 1996; Gallicchio et al., 

1998). 

Table 3. Correspondence between Engineered Systems and Chemical Systems 
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Given the a broad applicability as a source of analogies to explain concepts; a well-

established precedence in explanations of emergence; and general coherence with characteristics 

of engineered systems; it is concluded that thermochemistry is a suitable medium of study to 

develop theories for emergence in engineered systems. 

 

1.5 Research Approach 

Conducting research with engineered systems comes with certain challenges: 1) they are 

potentially large in scale; 2) the distance between its constituent’s members can be significant; 3) 

their behavior can be episodic; and 4) replication of the systems may be prohibitive.  These 

challenges make it difficult to directly observe and test an engineered system in its environment.  

The problem is further complicated by the absence of a coherent set of claims and assumptions 

for emergence in engineered systems.  The research in this dissertation attempts to solve a 

problem that is difficult to define and to formulate, and will require multiple frameworks and 

methods to successfully develop a solution: 

 A rational method is required to conduct research without direct observation of the 

emergence phenomena in engineered systems.   

 A method is required to inductively transfer knowledge from accepted theories into a 

proposed theory of emergence in engineered systems.  

 A framework for developing theory is necessary to guide the research and ensure that a 

theory is produced that meets generally accepted best practices for theory building. 

 Modeling and Simulation (M&S) framework is used to ensure the consistency and 

completeness of the modeling products. 
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The frameworks and method are used within a rationalist inductive research methodology which 

is defined and discussed in Chapter Two.   
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 CHAPTER 2 

METHODOLOGY 

 

The research question under study is: 

What are the factors in engineered systems that affect the occurrence of emergence, and 

how are the factors related? 

Answering the research question comes with particular challenges. The type of system that the 

theory will apply to may be complex and may not necessarily lend themselves to study through 

traditional system engineering methods and direct observation (Keating, 2008): 1) they are 

potentially large in scale; 2) the distance between its constituent’s members can be significant; 3) 

their behavior can be episodic; and 4) replication of the systems may be prohibitive or not 

possible.  To overcome these challenges it is necessary to choose a research methodology that 

leads to a theory that is not dependent on direct observations. 

 

2.1 Rationalist Inductive Methodology 

The research in this dissertation uses a Methodology for Rationalist Inductive Research 

(Sousa-Poza, Padilla, Bozkurt, 2008).  The methodology has been applied by Brewer (2010), 

Padilla (2010), and Kovacic (2013) in their respective research for Ph.D. dissertations. The 

methodology is based on establishing truth in theories through coherence through a rational 

belief system rather than direct observation (i.e., correspondence).   In other word, a theory is 

true if it coheres to other theories that are accepted as true.  It enables the extrapolation of a new 

theory from a set of theories that have already been justified and accepted as part of a body of 
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knowledge.  The methodology approach has three primary components (see Figure 1): 

exploration, structuration, and conclusion.    

 

 

 

Figure 1. Rationalist Inductive Research Methodology 

 

 

 Exploration gathers what is currently known about the research subject and 

identifies a problem.  A thorough literature review, case studies or other methods 

are used to capture the rules, axioms, definitions, ontologies, and other 

foundational elements of the problem ( i.e., what is known).  The scope of the 

research is narrowed and place in a specific context.   

 Structuration defines the architecture that supports the coherence of the system of 

beliefs (i.e., theory) produced by the research.  The architecture is a system of 
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logic that all statements produced by the system must conform.  It provides the 

necessary rigor to claim that the outputs of the research are true by coherence.  

 Conclusion is where the result of the research are interpreted and implications are 

considered.  . 

In the methodology, new theories are inductively built through coherence with existing 

theories as depicted in Figure 2. 

 

 

 

Figure 2. Inductively Building Theory through Coherence 

 

 

The new theory (“My Theory”) is justified if the inductively established structure of the theory is 

true according to a coherent system of beliefs. 

Supporting methods and frameworks are used in this dissertation to provide the rigor 

required by the structurization component of methodology.  The rigor in structurization 

establishes validity of the new theory through coherence in the inductive process and the 

structure of a logical belief system. 
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• Analogical Reasoning Method (ARM) – Justifies the transfer of knowledge from 

existing theories in the domain of the research medium of study (thermos 

chemistry) to the new theory in the domain of engineered systems. 

• Theory Building Framework (TBF) – Sets a standard for defining the proposed 

theory of emergence in engineered systems. 

• Modeling & Simulation System Development Framework (MS-SDF) – Provides a 

logical structure for developing models and simulations in the dissertation.  

The supporting methods and framework are detailed in the followings sections.   

 

2.2 Analogical Reasoning Method 

Analogies are basically explanations about entities or phenomena based on knowledge 

from a different domain (Bartha, 2010; Gentner, 1983).  Campbell (1920) argues that theories are 

distinguished from laws in that they can contain hypothetical ideas that are not measurable and 

cannot be proved or disproved by experimentation.  Conversely, laws only contain measurable 

concepts that can be proved or disproved by experiential means.  The truth and value of theories 

is established by analogies to other theories or laws and concepts that are already accepted as 

true.   The vital role of analogies in theories is also discussed by Hesse (1966, 2000).  He posits 

that analogies play a vital role in theories by explaining unobservable (or difficult to observe) 

phenomena in terms of observable phenomena in different domain.   Analogies make theories 

more intelligible and extend their predictions by introducing new descriptive terms and 

inferences from familiar phenomena.  
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Analogical reasoning is the process of drawing inferences and transferring knowledge 

between domains based on analogies.   There are many examples of analogical reasoning in 

scientific research.  The variety of applications found in the literature are represented in Table 4 . 

 

   

Example Description 

Particle Physics  

(Nambu & Jona-Lasinio, 1961) 

A theory is developed to explain how masses of subatomic particles (fermion, 

mesons, and nucleons) are formed.  The theory is based on an analogies to the 

mechanisms that cause energy gaps in the theory of superconductivity. 

Artificial Intelligence  

(Eremeev & Varshavsky, 2005) 

Real Time Intelligent Decision Support Systems (RT IDSS) are investigated.  

The researchers study how analogical reasoning is used in RT IDSS 

mechanisms to efficiently make decisions: analysis of the problem situation; 

search for solutions; learning; modelling, and forecasting 

Engineering Design 

(Kalogerakis et al., 2010) 

The researchers explore the effects of analogical reasoning in the engineering 

design process.   They consider application of analogies in accessing 

knowledge and transferring it to innovative solutions across multiple 

industries. 

Electrical Engineering (Li,2012) Dissertation research is conducted on methods to identify and visualize 

electromagnetic coupling paths.   Theories in fluid mechanics and 

electromagnetics are mapped to establish the analogy that energy flow is like 

fluid flow.  Base on the analogy, a method is proposed that uses algorithms 

from fluid mechanics to identify and visualize electromagnetic coupling 

paths. 

Table 4. Applications of Analogical Reasoning in Scientific Research   
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Table 4 (continued) 

Shared Awareness 

(Kovacic, 2013)  

Research is conducted based on analogies between the Cognitive 

Representation of Reality (CRR) and statistical mechanics (specifically, 

percolation theory) The author establishes functional relationships between 

postulates in CRR and those in percolation theory.  The functional similarities 

are used in the development of a new theory for the emergence of shared 

awareness within Cognitive Representation of Reality. 

Information Systems 

(Jog, 2015)  

A new theory is developed that explains the natural growth in the volume of 

sequential convex sets in information systems (ex., emergence of constraints in 

communication channels).  The theory is derived from analogies between 

concepts in geometry and information theory. 

 

 

In each of the examples in Table 4knowledge from a source domain was transferred to a target 

domain and used to draw conclusions and make inferences.    

The transfer of knowledge from a source domain to a target domain is valid to the extent 

there is correspondence between the relevant structural elements of the domains (see Figure 3).  

 

 

 

Figure 3. Structural Mapping and Knowledge Transfer 
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The structure of a domain includes the: properties; relationships; patterns; constraints; roles; and 

concepts that characterize the objects in the domain.  A formal method for structural mapping 

and analogical reasoning is defined by Gentner (1983) and enhanced by Holyoak and Thagard 

(1989), Gentner and Markman (2006); and Lee and Holyoak (2008).    A summary of basic rules 

and assumptions for the method are listed in Table 5. 

 

 

Criteria  Description Source 

Domains System of objects, attributes of objects, and object relationships.  Gentner (1983) 

Domain 

Knowledge 

Represented with predicate logic; a system of clauses that describe 

objects in the domain. Predicates are: a) attributes when the argument 

is a single object; b) relationships when the argument is two or more 

objects.     

Gentner (1983) 

1 to 1 

Mapping 

Elements in one domain must correspond to a single element in 

another domain 

Gentner & 

Markman (2006) 

Parallel 

Connectivity 

If two predicates correspond their arguments must also correspond. Gentner & 

Markman (2006) 

Pragmatic Only those elements in the domains that are relevant to the purpose of 

the analogy is considered in the structural mapping. 

Gentner (1983) 

Semantics Predicate describing structural element must have similar meaning but 

do not have to be identical. 

Gentner (1983) 

Systematicity Highest preference is given to structural elements that have causal, 

mathematical, or other functional implications. 

Gentner (1983); Lee 

& Holyoak (2008) 

Table 5. Structural Mapping Criteria  
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Analogies are not absolute; they exist on a continuum from weak to strong.  The more an 

analogy fits the structural mapping criteria the stronger the analogy and the stronger case for 

applying analogical reasoning.   This is especially true for the Systematicity criteria for structural 

mapping.  Correspondence between functional elements of a domain makes the greatest 

contribution to establishing the relationships as a strong analogy.  Formally stated, the 

proposition for the theory of the scientific analogy is:  if the structural components B= {b1, b2, 

b3,…bn} of system B describe the relationships and attributes of the parts in system B, can be 

mapped to structural components T= {t1, t2, t3, ….tn} of system T; then knowledge about 

system B can be used to explain system T.   The conclusions holds to the extent that the 

structural components in the mapping are relevant to the phenomena or entity to which the 

knowledge is being applied (i.e., they satisfy the pragmatic criteria for structural mapping).  

  

2.3  Theory Building Framework 

A standard for good theory based on a survey of best practices is constructed.  The standard is 

used as guidance in defining the proposed theory of emergence in engineered systems.   

There are a wide variety of definitions of theory.  The research question concerns theory 

as it relates to observable phenomena.  A survey of the various definitions of theory related to 

observable phenomenon was conducted and is summarized in Table 6. 
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Definition Explanation Prediction 

A complete theory contains an element that corresponds to an element in 

reality such that the element in reality can be predicted with certainty 

(probability of 1) from theory (Einstein et al., 1935). 

 X 

Theories are logical structures that explain phenomena and determine the 

rules for deductive inference (Hempel, 1958). 

X X 

A set of laws, axioms, or causal processes that provide explanations, 

predictions, and a “sense of understanding” i.e., why phenomenon occurs 

(Reynolds, 1971).  

X X 

Dubin (1978) defines theory as a closed systems that produces testable 

predictions about phenomenon.   

 X 

Gioia (1990), a theory is a coherent explanation of experienced or 

observed phenomenon 

X  

Meredith (1993), a theory is a model that explains why and how 

phenomenon occur in terms of postulates (logical statements) and the 

primary characteristics of the phenomenon. 

X  

Strauss (1998) defines theory as a set of concepts related by statements 

that can be used to explain or predict phenomenon.   

X X 

Theory is a statement of relationships between units observed or 

approximated in the empirical world. (Wacker, 1998). 

X  

Table 6. Definitions of Theory 

 

 

It can be concluded from Table 6 that the contents of a theory may vary, but it is 

consistently defined as a means to explain and or predict a phenomena.   However, not all 
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theories are created equal; some are considered better than others.  There is some question in the 

literature as to what represents good theory.    Some qualities rise to the level of being more than 

desirable “virtues”; without them theories are merely opinionated statements or collections of 

ideas.   These qualities are the basis for building “good theory” and are summarized in Table 7. 

 

 

Standard Description Reference 

Identified 

Need 

Supporting reasons to develop an explanation of a theme within a 

specified boundary  

Dubin (1969) 

 

Definitions Use generally accepted definitions to unambiguously define the 

phenomenon, concepts, and variables of the theory. 

Reynolds (1971) 

Propositions  Testable conclusions and knowledge claims that explain the phenomena 

and predict future states/ behaviors. 

Dubin (1969) 

 

Falsifiability  Propositions and hypothesis have empirical indicators, are testable, and 

capable of being false. 

Popper (1953); 

Dubin (1969) 

Analogies Analogies lead to the discovery and refine conceptual models by 

applying knowledge from a source domain to explain phenomena in a 

target domain. 

Hesse (1966;2000) 

Cause-effects 

Statements  

Rational statements defining the conditions and interactions between 

variables that cause changes in system states (i.e., effects).    

Dubin (1969);  

Reynolds (1971) 

Rigor  Establish the coherence and internally consistency of relationships in the 

theory to a system of logic.  

Reynolds (1971) 

  Table 7. Standards for Good Theory 



www.manaraa.com

29 

 

 

Table 7 (continued) 

Parsimony  State a minimum number of internally consistent relationships to 

support the claims of the theory. 

Wacker (1998) 

Uniqueness Concepts, propositions, or “good theory” virtues that are not posed 

by existing theories. 

Wacker (1998) 

Generalizable Integrates multiple concepts creating is broad applicability  Wacker (1998) 

Fecundity Enables the expansion of the research into new areas and leads to 

additional theories (concepts, models, hypothesis, etc.). 

Wacker (1998) 

 

 

2.4 Modeling and Simulation System Development Framework (MS-SDF) 

Modeling & Simulation System Development Framework (MS-SDF), proposed by Tolk et al. 

(2013), provides guideline when dealing with problems that are difficult to define and formulate. 

MS-SDF integrates three system engineering concepts with M&S: capturing requirements; 

defining component relationships; and verification and validation  

The MS-SDF captures the problem situation through reference modeling, conceptual 

modeling, and simulation.  Reference models define the set of concepts, requirements, facts, and 

assumptions about a system phenomenon.  The intent is to capture a comprehensive view of the 

subject from relevant perspectives; including inconsistent or conflicting interpretations.  While 

reference models attempt to comprehensively capture what is known and assumed about the 

system; the purpose of a conceptual model is to provide a more appropriate level of abstraction 

and simplification of a real world system (Robinson, 2008).  Conceptual models capture a 

consistent sub-set of the reference model that can be implemented in a simulation. They are the 

artifacts (tables and diagrams) that describe a system’s objectives, inputs, outputs, and content in 
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a way that address a specific problem or answers question of interest regarding the system (i.e., 

the modeling questions).  

The final phase of the MS-SDF consists of constructing a simulation based on the 

conceptual model. Simulation modeling produces a finite state machine realization of the 

conceptual model that answers the modeling questions.  Simulations provide the environment to 

observe the interactions of system components and the dynamics of the system phenomena in 

order to answers the modeling questions.   

The MS-SDF is implementation agnostic.  There are no requirements for using any 

particular tool or modeling language.   However, the authors recommend using a formal 

modeling method to facilitate logical consistency and provide the architecture for building a 

simulation.  It is a rigorous modeling method based on cause-effect relationships that enables 

formal computer simulations of systems.   Given the focus of the dissertation is developing a 

theory that explains causes; System Dynamics is particularly well suited as a modeling method. 

The seven major steps of this solution agnostic framework are defined in Table 8. 

 

 

Step Description 

1) Problem situation.  Capture the subject of the study or the focus of the modeling effort as represented by what 

stakeholder claim or state to be true or false about the problem. 

2) Assumptions & 

Constraints.  

Identify Stakeholder assertions that are necessary but have no specific justification. 

Table 8. M&S System Development Framework 
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Table 8 (continued) 

3) Reference model.  Define the set of requirements, facts, and assumptions for the system (or problem).  The 

set is documented in terms of statements, claims, and constraints based on relevant 

theories, rules, and stakeholder perceptions. Even inconsistent or conflicting 

interpretations are included. 

4) Modeling 

questions.   

Develop questions of interest about the problem, the relationships, and behaviors as 

documented in the reference model.   

5) Conceptual model. Define a subset from the reference model that has consistent interpretations of the systems 

(or problem) and can be used to answer the modeling questions. Document the subset using 

a solution agnostic modeling language to remove ambiguity and insure logical 

relationships in the model. 

6) Simulation.  Create a dynamic representation (i.e., a virtual world) for the problem using the 

information from the conceptual model and a simulation modeling software package. 

7) Verification & 

Validation 

Verify that the model that was built is the model that was designed; and validate that the 

model meets is intended purpose.   

 

 

2.5 Research Process 

The actions that will be taken to answer the research question are defined in the research process.   

Each action is justified by mapping it to one of the components of the Rationalist Inductive 

Research Methodology (RIRM) or one of its supporting methods/frameworks:   Analogical 

Reasoning Method (ARM); Theory Building Framework (TBF); Modeling & Simulation System 

Development Framework (MS-SDF).  The process steps and mapping are detailed in Table 9. 
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Process Steps Frameworks/ 

Methodologies 

1) Identify a research opportunity: a problem related to a phenomenon of interest.  RIRM 

2) Define the context that the proposed theory will be applicable and that the research will 

be conducted. 

RIRM 

3) Conduct a detailed literature review of the current body of knowledge for the problem.   RIRM 

4) Develop a reference model based on a broad set of claims and assumptions found in the 

literature about the problem. 

MS-SDF 

5) Identify a gap in the body of knowledge for how the problem is currently addressed and 

develop a research question. 

RIRM  

 

6) Identify an alternative body of knowledge (i.e., a suitable medium) to study the problem 

and inductively develop the theory.  

RIRM  

7) Justify the use of the selected medium by establishing correspondence between the body 

of knowledge for the medium of study and the nature of the body of knowledge for the 

phenomenon.  If correspondence is not established, identify a new medium and repeat 

the step 6. 

ARM 

8) Develop a conceptual model (i.e., a set of coherent set of claims, assumptions, laws, 

theories, axioms, conditions, boundaries, etc.) that explain the phenomenon occurring in 

the medium of study. 

MS-SDF 

9) Establish correspondence between the nature of the phenomena in the medium of study 

and its nature according to the problem’s current body of knowledge.  If correspondence 

is not established, identify a new medium and repeat the step 6. 

ARM 

Table 9.  Research Process Steps 
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Table 9 (continued) 

10) Develop analogies using the medium’s theories and conceptual model that explain the 

operational nature of the problem phenomenon in terms of the operational nature of the 

phenomena in the medium of study. 

RIRM 

/ARM 

11) Identify a system of logic as a structure for coherence of the new theoretical model to 

address the problem.    

RIRM /TBF 

12) Develop a conceptual model of the problem phenomenon using the analogies and the system 

of logic.  

ARM  

13) Develop a set of logical propositions based on the analogies and the conceptual model for 

the problem phenomenon. 

TBF  

14) Verify that the set of claims, assumptions, laws, conditions, boundaries, propositions, 

hypotheses (i.e., the theoretical model) are coherent and conform to good theory building 

practices.  If not verified, repeat 10-14. 

RIRM /TBF  

 

15) Define a modeling question and create a simulation model based on the theoretical and 

conceptual models. 

MS-SDF 

16) Design and conduct simulation experiments to further study of the problem and refine the 

theory.  

MS-SDF  

17) Analyze the results of the simulation experiments and determine if: a) there is any failure of 

the theoretical model to cohere with its body of beliefs (i.e., logical coherence with claims, 

assumptions, laws, conditions, and boundaries); b) there is correspondence with behavior of 

the medium’s phenomenon. If correspondence or coherence fails, repeat 15-17. 

RIRM  

 

18) Analyze the overall results of the research; determine if the research questions has been 

answered.  If not answered, repeat 6-18. 

RIRM  

19) Document the conclusions, propositions, predictions, and knowledge claims. RIRM 
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The steps and decision gates in the process are depicted using Business Process Modeling 

Notation (BPMN).  The BPMN flow chart in Figure 4 shows the research steps in major process 

groups and decisions gates.  
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Figure 4. Research Process Flow Chart 
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Figure 4 (continued) 

 

 

 

From the BPMN flow chart, seven decision gates are identified.  These gates represent the 

significant milestones in the research process towards reaching a conclusion for the research 

question.  The process flow chart provides a logical framework for conducting the research. 
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CHAPTER 3 

LITERATURE REVIEW 

There is no single generally accepted definition of emergence (the verb) or emergents 

(the noun) that captures all of their important elements. The history of emergence is ancient and 

full of ambiguous and sometimes conflicting assertions.  Silberstein and McGeever (1999), 

Corning (2002), Campbell (2015), and Sartenaer (2016) are among those that discuss the 

“multifarious”, “confusing”, and “contradictory” claims in the domain of emergence.  The first 

objective of the literature review is to study the domain of knowledge for the concept of 

emergence and capture its theories, definitions, descriptors, distinctions, and other important 

elements.   The next objective is to use the result of the first objective to unambiguously define 

what emergents are and how they occur.  The artifacts of the review are a reference model that 

captures what is known and assumed about emergents, and an ontology of the emergent concept.  

An ontology is a formal representation of the nature of a concept; its terms, properties, 

relationships, restrictions, and otherwise its essential elements (Gruber, 1993).  The reference 

model informs the ontology by providing a comprehensive view of the domain for concepts 

including its conflicting and inconsistent aspects.  The ontology contributes to answering the 

research question by providing a congruent and unambiguous representation of the emergence 

concept.   

The study covers a wide variety of historical and contemporary concepts including those 

in Table 1 as well as others identified during the literature review.  There are easily hundreds 

papers and books on emergence concepts.   An attempt was made to capture original concepts 

and those most frequently referenced in the literature.  Each conceptual element captured in the 

review is assigned a unique identifier consisting of a number preceded by the first two letters of 
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the primary author’s last name (adding a third letter and or first name initials if necessary to 

distinguish between authors. The inputs from the literature review are used to construct an 

ontology according to the Web Ontology Language standard (McGuinness et al., 2004) using the 

Protégé tool for developing and maintaining ontologies (Protégé, 2016).   The extended literature 

review, reference model, and detailed ontology (Figure 21) are presented in Appendix A.  The 

summary of finding is presented in the following section. 

 

3.1  Literature Review Findings 

The literature review reveals multiple theories and varied definitions of emergence; some of 

which contradict one another.  Building an ontology of emergence led to the discovery of 

common classes and properties that can be used to define the concept in an unambiguous  way.  

Figure 5  depicts the hierarchy of classes and subclasses for the emergence ontology. 
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Figure 5. Ontology of Emergence 

 

 

The author posits that the ontology at the level depicted in Figure 5 represents an unambiguous 

and unifying general definition of the emergence concept. Emergence is defined by two primary 

classes: characteristics of the emergent effects, and characteristics of systems where emergent 

effects take place. The primary classes are broken down into eight subclasses: type; logical 

relationship; perspective; indicators; temporality; structure; knowledge constraint; and 

application domain.  Conflicts among emergence concepts are reconciled by grouping them into 

the eight subclasses.      For examples, the conflict between emergence as a diachronic vs 

synchronic concept is resolved by grouping both concepts in the category of Temporality.  

Whether emergence is a time dependent (diachronic) or independent (synchronic) or not, in 

either case there is an aspect of time (temporality) that defines emergence.    
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The concept is further defined by propositions for each subclass: 

Phenomena Characteristics: 

• Perspectives.  The existence of emergents depends on the point of view that the novelty 

of the effect is determined.   If the significance is determined and varies according to the 

observer, then emergence is extrinsic (i.e., observer dependent).  If the significance is 

inherent to the system and does not vary according to the observer, then emergence is 

intrinsic (i.e., observer independent).   

• Indicators.  The occurrence of emergent effects is marked by certain measurable facts, 

i.e., parameters.  The parameters are not the causes of emergents; they are the quantitative 

signs that emergent effects have taken place.  Parameters have magnitude (size or 

amount) and direction (increasing or decreasing).   Examples include: non-linear results 

from components interactions; uncertainty, randomness, or disorder of the future system 

states (i.e., entropy); variety of potential system states relative to the initial variety; the 

number of distinguishable states or the number of variables required to define a state ( 

i.e., complexity); data that describe or are actionable by the system (i.e., information). 

• Logical Relationships.   The relationship between system components and emergent 

effects is characterized by being able to derive or explain an effect from system 

components and their interactions.  Derive is used in the context of being able to start 

with an initial point of knowledge about the system’s parts and interactions, and make 

logical progressions to arrive at the system level effects.   Explain is used in a similar way 

but in the opposite direction.  To explain is to start with the system level effect and 

logically trace its origin back to knowledge about the parts in the system.    Relationships 
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are either currently derivable / explainable; theoretically derivable/explainable in the 

future; or completely underivable /explainable.     

• Type.  Emergents are the consequence of the interaction of components in a system.   

They include behaviors (the particular way in which the system functions); qualities 

(characteristics of the system); patterns (a reoccurring sequence or identifiable form); and 

structures (particular configurations of the system parts). 

System Characteristics: 

• Domain.  Emergent concepts apply to different type of systems.  There are three general 

domains of systems types to which emergence concept apply: Physical systems that are 

engineered by humans; physical system that occur naturally in the environment; and 

metaphysical systems that occur naturally in the environment.  

• Knowledge Constraint.  The ability to derive/explain emergents effects is limited by 

insufficient knowledge of component properties and their interrelationships in the system. 

The various type of constraints that inhibit deriving / explaining effects include but are 

not limited to: experience of the observer; density of information in the system; capability 

to view the system as a whole; inherent difficulty due to iterative aggregations.  

• Structure. Nature of the configurations of components that form the system are described 

by certain characteristics, which include but are not limited to: hierarchal order; 

assemblage of dissimilar parts; components with non-linear functions; coupled / 

interconnected components. 

• Temporality. The state of the system is the configuration if its parts and the values of 

their variable at a point in time. The state may or may not be time dependent.   If the state 
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that produces emergent effects develops over time, the system temporality diachronic.  If 

then emergent state is constant and always exist, the system temporality is synchronic.  

It was determined that each instant of emergence theory studied in the in the literature review 

contained claims and or assumptions in each of the eight sub-classes.  Variation among the 

theories was found below the level depicted in Figure 5.  However, the consistency among 

theories at the class and sub-class level support the ontology as a unifying definition of 

emergence.   

The ontology covers physical and metaphysical domains.   Given the focus of the research is 

on engineered systems, operational definitions of emergents (the noun) and emergence (the verb) 

in the physical domain are synthesized from the literature review:   

a) Emergents are system effects that are approximately underivable based on system 

components and their interrelationships.   

b) Emergence is the action of producing system effects that are approximately 

underivable based on system components and their interrelationships.  

Definitions for both emergent (the noun) and emergence (the verb) are offered to provide 

additional clarity given both words are frequently used throughout the body of knowledge as 

well as the dissertation. The operative words in the definitions are “underivable” and 

“approximately”.  Underivable describes the limitation on logically determining in advance the 

effects of component interactions based on knowledge of the components and their 

interrelationships.  A corollary for the underivable limitation is unexplainable.  It is assumed that 

a limit on the ability to derive and effect is also a limitation on the ability to explain it.  

“Approximately” is used to qualify the underivable limitation.  It captures the concept that 

emergents in the physical domain are theoretically derivable, but doing so is inherently difficult 
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and may not have occurred.  The qualifier of being “approximately” underivable is necessary to 

distinguish the concept of emergence in the physical domain from its application in the 

metaphysical domain.   The metaphysical domain refers to that which is unperceivable by the 

senses (i.e., the mind, consciousness, etc.).   In the metaphysical domain, emergents are 

completely underivable vs. being theoretically derivable in the physical domain.   Restricting the 

operational definition to the physical domain is appropriate as the dissertation is concerned with 

engineered systems.      

The operational definitions and propositions inform the design of the simulation model for 

emergence in engineered systems.  The ontology will be used to guide the development of 

models and a theory of emergence in engineered systems.    

 
3.2 Context 

The emergence phenomena has broad ranging in applications across multiple disciples 

including but not limited to: cosmology; quantum physics; biophysics; cell biology; primate 

evolution; neuroscience; consciousness; and religion (Clayton, 2006).    The research interest of 

this dissertation is in the emergence phenomena as it pertains to engineered systems.  This is the 

context in which the products of the dissertation are developed.  For this reason, a discussion on 

systems and the impact of emergence is presented.  

 

3.2.1 Engineered Systems   

Systems exist to accomplish tasks, solve problems and meet vital needs in our society by 

providing capabilities that are not possible by their discrete components (i.e., parts). In the most 

basic form, a systems is naively accepted to be a set of individual parts that form a whole. By 
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this definition almost everything is a system of some sort: a set of books on a shelf is a library; a 

group of ants in the same general area might be a colony; a set of instructions can define a 

process; a group of girls can form a soccer team.   But can we really consider a pile of bricks or a 

room full of people to be a system?  

The operative words for defining a systems are connections (i.e., relationships) and 

functions (i.e., behaviors).  Bertalanffy (1956) formally defines a system as a set elements where 

the behavior of the elements varies based on the nature of their relationship to each other. The 

parts of a system must be connected in a way that allows them to perform a function that could 

not be performed by the parts of subsets of parts. Elements in a system have an affect each other 

as well as the properties and behaviors of the systems as a whole (Blanchard & Fabrycky, 2006).  

Set theory can be used to formalize Bertalanffy’s definitions of a system.  Elements Q = {q1, 

q2,… qn} stand in relation R to each other such that they have system behaviors A= {a1, a2, a3, 

…an}.  In a different relation R′ the system behaviors are A′ = {a′1, a′2, a′3, …a′n}.   Elements Q 

are a system iff A ≠ A′.   

The research for this dissertation is concerned with the class of systems that are created 

by humans (i.e., engineered) rather than those that occur naturally in the environment. 

Engineered systems are designed and made to perform intentional functions that accomplish an 

explicitly defined purpose (Ackoff, 1971; Checkland, 1999; Blanchard & Fabrycky, 2006).  In 

this context the engineered system is the artifact (the “thing”) that is produced by the engineering 

effort.  Engineered systems have certain characteristics that distinguish them from natural 

systems.  From Simon (1969), Blanchard and Fabrycky (2006), and Buede (2011) these 

characteristics can be generalized as:  
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 Designed by humans. 

 A functional purpose, a set of specifically defined objectives, or mission in response 

to a specified need.  

 Defined combinations of resources (people, hardware, software, equipment, 

processes, rules, etc.). 

 Interfaces to connect the resources. 

 Interactions among the resources and with the environment that produce system 

behaviors in desirable and undesirable ways. 

 Hierarchical relationships.   

Simon (1969) discusses two modes (or propositions) of design that are required to realize 

an engineered system: 1) there must be a proposition of the desired states (the properties and 

behaviors that the system should have); and 2) a proposition for how to intentionally achieve the 

desired states (parts, assemblies, subsystems, structures, processes, etc.).  For example, consider 

the propositions that a system has desired states (behaviors) consisting of set A {a1, a2, a3, 

…an}, and an intentional means for achieving them that consist of set B {b1, b2, b3, …bn}.  To 

the extent that “A” can be achieved by “B”, the application of engineering methods is tenable 

and produces a successfully engineered system.  However, to the extent that “B” produces states 

that are different from “A” (greater than, less than, or otherwise not equal to), the application of 

engineering methods is less tenable and the original purpose of the system may not be realized.  

Designing engineered systems is an iterative process of defining requirements and 

identifying solutions (Blanchard & Fabrycky, 2006).  Requirements are statements that represent 

specific ways that the system will be useful to its stakeholders and serve its intended purpose 

(Buede, 2011).  Each requirement can have many potential solutions; i.e., combinations and 
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configurations of components that produce system states to satisfy one or more requirements.  

The universe of all potential solutions is the available design space.  Throughout the design 

process, the available design space is explored; solution alternatives are evaluated, and decisions 

are made regarding which configurations of components will be used to satisfy the system 

requirements.  As design decisions are made, the available design space gets smaller until 

eventually an area is defined that contains the design solution and the set of system states that 

satisfy the system requirements.    The set of system states for the design solution establish the 

limits of acceptable performance for the system.  All system states that fall outside these limits 

are errors (Blanchard & Fabrycky, 2006).  The circles in Figure 6 represent the area of the state 

space for each type of state related to designing engineered systems: a) designed; b) designable; 

c) undesignable. 

 

 

 

Figure 6. State Space Segmentation  
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 Designed:  The states of a system according to its design will fall in this area.  A system 

is designed to produce certain states that meet stakeholder requirements (functions, 

capabilities, missions, etc.) and to conform to constraints of cost, schedule, and 

performance.  This represents conformance to Simon’s (1969) first design proposition for 

an engineered system by specifying the properties and behaviors the systems should have 

as well as the second proposition as to how the properties and behaviors will be achieved 

with the components of the system.  In this space, system states are derivable from and 

explainable by the system components. 

 Designable: There are many ways to meet requirements and conform to constraints. The 

universe of states for all possible designs for all possible solutions is represented by what 

is designable (i.e., the available design space domain), where each design option has its 

own set of system states.  While all states in this space are capable of being designed they 

may not have been selected for inclusion in the particular engineered system.  These 

states also represent the state that are specifically not desired (i.e., errors and failures).  

State that occur in this space are failures of  Simon’s (1969) first design proposition for 

an engineered system by falling outside of the specified properties and behaviors the 

systems should have.    Whether excluded as part of the design process or occurring 

because of some failure/error event, system states in this space are derivable from and 

explainable by the system components. 

 Undesignable: Some system requirements and constraints are apparently beyond human 

capabilities to devise a means by which they can be satisfied.  The systems states for 

these requirements and constraints are undesignable. States that occur in this space are 
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failures of Simon’s (1969) first and second propositions. System states in this space are 

underivable from and unexplainable by the system components.   

 

3.2.2 Definition and Examples of Emergence in Engineered Systems  

All systems produced by artificial means do not strictly conform to the propositions of an 

engineered system. Some engineered systems begin with specifically designed functions and 

capabilities, and then evolve into new systems characterized by functions and capabilities that 

are not a result of intentional design effort or explainable by the initial design. Other systems 

retain their original design characteristics, yet they have apparently unexplainable behaviors or 

properties.  In both exceptions, the engineered systems have states that fall in the undesignable 

space where system states are apparently unexplainable / underivable.   

Based on the ontology developed from the literature review, operational definitions of 

emergence (the verb) and emergents (the noun) in the physical domain are: 

a) Emergents are system effects that are approximately underivable based on system 

components and their interrelationships.   

b) Emergence is the action of producing system effects that are approximately 

underivable based on system components and their interrelationships.  

 With the operational definitions in mind, we can conclude that system states in the 

undesignable state space are emergent effects.  Consider the following examples in the literature 

of systems that display this phenomena: 

National Airspace System (Bonnefoy, 2004/2006). The original National Airspace 

System (NAS) was composed of 19 airports and was designed to move large volumes of people 

over far distances. Each airport was paired with a Terminal Radar Control Facility (TRACON).  
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The job of the TRACON is to manage local aircraft arriving, departing, or transiting airspace.  A 

decentralized network of airports, local control of air traffic, and large high capacity aircraft were 

general features of the original system.  Demand for air transportation increased and airport 

capacity grew.  At some point, the structure of the system changed.   Political, social, and 

economic forces constrained the growth of the large regional airports and led to: 1) the 

emergence of smaller secondary airports and accompanying TRACONs; 2) secondary airports 

spurring growth of smaller airlines, offering more frequent, lower capacity, lower cost, regional 

flights; 3) declining average passengers per flight with increasing total numbers of travelers; and 

4) increased dependency of airports and increased centralization of air traffic control.  The 

changes in the NAS were not a result of design and were not predicable based on the original 

components of the system. 

Stock Market (Aldridge, 2014; Bowley, 2010; CFTC, 2010; Kirilenko et al., 2015 

Levine, 2015; Serritella, 2010; Sommerville et al., 2012).  The primary purpose of the New York 

Stock Exchange (NYSE) is to maintain liquidity in the market.   Liquidity is defined as the 

ability to execute contracts in a timely fashion between buyers and sellers without effecting 

price.  In a 20 minute period on May 6, 2010, the market saw a complete evaporation of liquidity 

and individual stock prices swings from $.01 to $100K.  The phenomenon is known as a “flash 

crash” and is characterized by: 1) the evaporation of liquidity; 2) extreme price swings and a 

return to normalcy in a relatively short period of time; 3) irrational prices that are not based on 

economic information. Several causes have been suspected, from malicious acts to electronic 

trading algorithms, but none have been confirmed as the root cause.   When considered 

separately, the properties and relationships of the system components do not explain or provide a 

means for predicting the flash crash phenomenon. 
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Network Routing System (Mogul, 2006).  Mogul describes an unexpected global 

behavior that occurred in the Planetary-Scale Event Propagation and Routing (PsEPR) system.  

The system attempts to optimize the routing of traffic between clients accessing servers in a 

network.  The routing system design is based on the proposition that optimization is achieved 

when: 1) clients are allowed to select any server in the network; 2) clients are evenly distributed 

among servers; and 3) the selection of servers by clients is based on local preference heuristics.  

For instance, clients would select servers that they were closest to in proximity and for which 

they historically had the longest connection times.  When a client was not able to connect to a 

server on its preference list, the server would move to the bottoms of the client’s local list and 

the next server would rise to the top.  However, as the routing system scales there was a 

convergence among clients to a global preference for the same servers.  With the clients 

attempting to accesses the same servers, a cycle of overloading and network instability ensued.  

It is true that this particular convergence effect would not exist in modern routing technology.  

However, it was not apparent at the time in the local properties of the system components before 

the global system phenomena of was observed. 

London Millennium Footbridge (Bocian, 2013; Dallard et al., 2001, Macdonald, 2008). 

In June 2000, London’s Millennium Footbridge opened with over 80,000 visitors. At some point 

during the day unexpected excessive lateral vibrations accumulated to a point that required the 

closing of the bridge.  Subsequent analysis eliminated the design or deviations from design 

standards as the cause.  It is suspected that the synchronization of pedestrian footsteps or 

negative damping from the pedestrian traffic is the likely source.   Lateral vibration due to 

pedestrian-structure interactions is a repeatable phenomenon that had occurred on occasion for 



www.manaraa.com

51 

 

 

30 years.  However, it was not explained and predictable until years after it was observed in the 

Millennium Footbridge case. 

Future Combat System (Blanchette et al., 2010; Pernin, et al., 2012). The Future 

Combat System (FCS) was a modernization effort intended to “revolutionize the way the Army 

fights” by replacing existing combat units with assets integrated by a central communications 

network.  Entire brigades would outfitted with mobile technologies protected by improved 

sensors and superior situational awareness. It was a $200B effort that was largely consider a 

failure and was ultimately canceled.   One of the many challenges was the difficulty in testing the 

system due to the unforeseen behavior arising from the dynamic interactions of constituent 

systems. For example, in a “fires scenario”, the sensors in the system detect and report a target, 

and the software algorithms determine which available shooter is best to engage the target. 

However, it could not be determined in advance which shooter would be selected or what the 

contributions would be of component-level design changes. Seemingly small, non-critical 

changes had unexplainable impacts to the system’s overall performance.    

The common thread among these examples is a system state that is not readily 

explainable by or derivable from the system components and component relationships.  The 

National Airspace system is an example of an evolved structure where environmental constraints 

developed over time, creating global system behaviors that are not derivable from the system 

components in isolation.  If there is knowledge of the component properties, their relationships, 

and the system constraints then deriving the global behavior is possible.  Stock Market systems is 

an example of a system where global behavior is a result of the interdependencies (i.e., coupling) 

between the system components.  Because of these interrelationships, system behaviors and 

properties cannot be derived from information about the components without observing them in 
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relationship to each other.  The network routing system, London’s Millennium Footbridge, and 

the Future Combat System demonstrate how some engineered systems produce unintended 

consequences that are contrary to the intended purpose of the system design.  The system 

behaviors are completely determined by the system components and their relationships.  

However, deriving the unintended system behaviors or explaining them in terms of the 

components and their relationships is intrinsically difficult. 

All of the examples presented fall under the undesignable state space depicted in Figure 

6.  They are undesignable in the sense that they were not intended by the design, and they are not 

explainable by the design or its components.   They fail Simon’s (1969) propositions for 

engineered systems.  They are engineered only in the sense that they are produced by humans 

and contain subsystems that are designed.     

The examples in this section represent the wide range of types of engineered systems that 

frame the context in which the research is conducted.   
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CHAPTER 4 

CONCEPT DEVELOPMENT  

The research question is: 

What are the factors in engineered systems that affect the occurrence of emergence, and 

how are the factors related? 

In Chapter One, thermochemistry was established as a medium to investigate and inform the 

development of a theory of emergence that will answer the research question. Thermochemistry 

was initially selected for its broad applicability as a source of analogies to explain concepts; its 

well-established precedence in explanations of emergence; and its coherence with characteristics 

of engineered systems.  Chapter Four presents reference and conceptual models of endothermic 

reactions in chemical system based on generally accepted definitions and concepts from 

Thermochemistry.   The background and foundational concepts of thermochemistry that were 

used in this chapter are available in Appendix B. 

 

4.1 Chemical Reactions 

A chemical systems is a hierarchal structure of chemical substances (i.e, components).  The 

structure has macro level properties and characteristics (i.e., macro states) that are determined by 

combinations individual substances (i.e., microstates) of the system.  A chemical reaction is a 

phenomena characterized by changes in the macro and micro states of a chemical system.  The 

changes are caused by interactions of chemical system components with the environment, and 

other chemical systems.  Like engineered systems, sometimes the effects of the interactions are 

properties and behaviors that are explainable based on their parts.  Other times, the interaction 

changes the system and the effects are not apparent in its parts (i.e., they are emergents).  The 
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chemical reaction phenomena is consistent with the operational definitions of emergents and 

emergence in the physical domain derived from the ontology in Chapter three and Appendix A: 

a) Emergents are system effects that are approximately underivable based on system 

components and their interrelationships.   

b) Emergence is the action of producing system effects that are approximately 

underivable based on system components and their interrelationships. 

The transition of chemical systems to producing interaction effects that are underivable describes 

the emergence phenomena we wish to understand in engineered systems.   The objective now is 

to identify causal factors for chemical reactions in chemical systems and used that knowledge to 

inform the development of a theory of emergence in engineered systems. 

 

4.1.1 Endothermic Reactions  

Components in a chemical system are held together in a certain configurations by forces 

(bonds). Each configuration is a microstate of the chemical system which determine the systems 

macro states (its properties and behaviors).    In order for a chemical reaction to take place, there 

must be a sufficient change in the systems internal energy (U) to break the bonds that are holding 

the molecules together. Chemical systems interact by exchanging energy with the environment 

(which can include other chemical systems).  Endothermic reactions are an examples of chemical 

reactions where new microstates produce a new macro state of the chemical system has more 

energy than its initial state. The properties, behaviors, and the configuration of the molecules in 

the chemical system are a function of its internal energy.  Therefore, a chemical reaction results 

in a change in the configuration, behavior, and properties.    An example of a chemical reaction 

is depicted by in Figure 7.  
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Figure 7. Endothermic Chemical Reaction 

 

 

Consider the blue line (*) in Figure 7.  Chemical systems are initially in a state of 

equilibrium where its initial internal energy (Ui), the configuration of its components, and the 

associated properties and behaviors of are constant.  While interacting with the environment or 

other chemical systems, the internal energy increases and causes the bonds that maintain the 

configuration to bend.  If the change in internal energy (U-Ui), also known as change in enthalpy 

(∆H), does not exceed the difference between the activation threshold (Ua) and Ui; eventually 

the additional energy dissipates to the environment or another chemical system; and the system 

returns to its original state of equilibrium.   Ua is the minimum amount of energy required to 

break the bonds that maintain the configurations of the system.   Ua-Ui is the enthalpy tipping 

point (∆Htp) that must be exceed before a chemical reaction can occur.  In the case for the blue 

dotted line, the internal energy did not exceed ∆Htp.   Because the exchange of energy was 
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insufficient to exceed the required threshold, final ∆H is zero; and the configuration, behavior, 

and properties of the chemical system return to their original state. 

 Consider the red (**) line in Figure 7.    While interacting with the environment or other 

chemical systems, the internal energy increases and exceeds the activation threshold (Ua) and the 

enthalpy tipping point (∆Htp).   The bonds that maintain the configuration break; some of the 

additional energy is absorbed into the system and some dissipates back to the environment or 

another chemical systems; new bonds are formed; and the system settles at a new state of 

equilibrium, and at a higher level of internal energy.  In this case, the change in enthalpy (∆H), is 

greater than zero and a chemical reaction has occurred.  The configuration, behavior, and 

properties of the chemical system change. 

The chemical reaction in Figure 7 depicts a transition that occurs in chemical system; to a 

new level of equilibrium where the configuration of its parts and the nature of its properties are 

different (i.e., emergent).   This transition is a demonstration of emergence. 

 

4.1.2 Factors that Affect Chemical Reactions 

There are generally four factors of chemical systems that are mechanisms (or means) by which 

the chemical reaction rate and likelihood of occurrence can be changed: 1) the frequency of 

contacts (i.e., collisions) between molecules; 2) the force at which they collide; 3) orientation of 

the molecules when they collide; and 4) the activation energy (Ua) of the system.   These 

mechanisms are elements of the rate law where the rate of a chemical reaction is given by [4.1] 

and the Arrhenius Equation [4.2] 

  Rate = k*(substance 1) a × (substance 2) b × (substance 2) c …            [4.1] 

  Where: 
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k= the rate constant and; 

The exponents a, b, c,… are the reaction orders for each substance which 

indicates how much the rate of reaction is affected by the substance.  

Increasing the amount of substance 1, 2, or 3 will exponentially increase 

the rate based on the reaction order of the concentration of the 

substance(s) in the chemical system 

Rate constant, k = A×e (-Ua)/RT                        [4.2] 

  Where: 

   A = Frequency factor for favorably orientated collisions 

   R= the gas constant 

   Ua = Activation Energy 

   T = Temperature of the system 

 . 

1) Concentrations. The energy in a chemical system causes the molecule in its substance to 

move.   In order for a chemical reaction to occur, the molecules in the chemical 

substances must collide with one another.   The greater the number of molecules there are 

in the chemical system, the higher the probability that there will be a collision.    The 

number of molecules is increased by increasing the volume (i.e., concentration) of one or 

more substances relative to the total volume.   Increasing the concentration, increases the 

frequency of collisions between molecules of the substances in the chemical system 

which increases the rate of the reaction according to the rate law [4.1].  The change in 

rate is exponential if the order of the substance is greater than 1.  For example, increasing 
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the volume of a substance by 50% (or a multiple of 1.5) with a reaction order of 2 would 

increase the reaction rate by a multiple of 1.52 or 2.25.  

2) Molecular Freedom.  There are a certain number particles in each molecule of the 

substances in a chemical system.  Each particle has a certain charge (positive, negative, 

or neutral).  Substances in a chemical system will only react if the number and charges of 

their particles are in the required alignment (i.e., orientation) when they collide with each 

other.   The freedom of movement among molecules in a substance varies according to 

the state of the substance: solids have the least freedom while plasma has the most.  The 

variations in states affect the molecular movement and the chances that the particles will 

collide and be in the correct orientation to cause a chemical reaction.  The chemical 

reaction rate is increased as a linear function of molecular freedom of the substances in 

the chemical system. 

3) Temperature.   The kinetic energy in a chemical system is determined in part by the 

speed that the molecular components in the system are moving.  The faster the 

components move; the greater the frequency and intensity (force) of their collisions with 

each other.   Molecules move faster at higher temperatures causing the kinetic energy and 

consequently the internal energy in the system to increase.  The rate of a chemical 

reaction grows exponentially as a function of temperature (T) where the change in the 

rate constant = e -1/T according to the Arrhenius equation [4.2]. 

4) Catalyst.  Adding substances or energy from an external source causes the internal 

energy (U) of a chemical system to increase.   New chemical products are formed when 

the change in the system’s enthalpy (∆H) plus its initial internal energy (U) exceed the 

system’s activation energy (Ua).  Some substances possess the ability to be added to a 
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chemical system without changing the chemical products of the reaction.   These 

substances (catalyst) maintain their structure while lowering the activation energy (Ua) 

and/or improving particle orientation during a collision.  The rate of a chemical reaction 

grows exponentially as a function of reductions in Ua where the change in rate constant= 

e -Ua  according to the Arrhenius equation [4.2]  

Figure 8 maps the relationships between the factors that influence a chemical reaction and the 

mechanism by which they affect change. 

 
 

 
 
 
 
 
 
 
 
 

 

 
Figure 8. Chemical Reaction Factors   

  

 

4.2 Chemical System Model 

Chemical reactions depicted in Figure 7 provide a foundation for building a conceptual 

model of emergents.   Models are abstractions of reality that can be instrumental in 

understanding systems and their behavior.  The Modeling and Simulation-System Development 

Framework (MS-SDF), proposed by Tolk et al. (2013) provides a methodology for the design 

Factors Mechanisms 

Molecular Freedom 

Concentrations 

Temperature 

Catalyst 

Increase Collision Frequency 

Increase Collision Force 

Improve Orientation  

Lower Activation Energy (Ua) 
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and construction of models to study phenomena. MS-SDF is used to develop models of 

emergents in chemical systems. 

 

4.2.1 Chemical Reaction Reference Model 

A set of claims, assumptions, and constraints are constructed from the definitions and 

discussion of chemical reaction concepts (see). Claims are statements explicitly stated by the 

laws and axioms that govern the processes; assumptions are not explicitly stated but a logical 

conclusions based on combinations of claims; and constraints are statements that define the 

boundaries of the system being studied. 

 

 

 Characteristics Claims, Assumptions, 

Constraints 

Chemical systems are hierarchal structures Claim 

Chemical system exchange energy with its environment. Constraint 

The net change in them sum of system energy and environment energy is always zero. Claim 

Emergent properties are the macro properties of the system that are different from the 

properties of its micro components.   

Assumptions 

Properties of the products produced by chemical reactions are different from the 

properties of the substances in the chemical system before the chemical reaction. 

Claim 

Change in internal energy (∆U) ≈ change in enthalpy (∆H) under constant pressure. Claim 

Table 10. Chemical Reaction Reference Model 
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Table 10 (continued) 

Chemical systems produce products with emergent properties when the 

change in enthalpy (∆H) > the difference between the activation energy (Ua) 

point and the initial internal energy (Ui) of the system. 

Claim 

Enthalpy (H) > 0 indicates the environment transferred heat to the chemical 

system. 

Claim 

Enthalpy (H) < 0 indicates the chemical system transferred heat to the 

environment. 

Claim 

Enthalpy (H) > 0 indicates the entropy (disorder) in the system is increasing. Claim 

Enthalpy (H) < 0 indicates the entropy (disorder) in the system is decreasing. Claim 

Interaction between chemical system components increases as heat is 

transferred to the system. 

Claim 

Chemical reactions increase by changes in concentration, temperature, 

molecular freedom, or catalytic volume. 

Claim 

Chemical reactions increase as a non-linear function of concentration if the 

chemical substances reaction order is >1; otherwise reaction increases as a 

linear function.  

Claim 

Chemical reactions increase as a non-linear function of temperature. Claim 

Chemical reactions increase as a linear function of molecular freedom.  Claim 

Chemical reactions increase as a non-linear function of catalytic volume. Claim 

Chemical systems eventually return to equilibrium when there are no changes 

in concentration, temperature, molecular freedom, and catalytic volume. 

Claim 
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Table 10 (continued) 

Chemical reaction is occurring in an open system under constant pressure 

with insignificant or no pressure (P) × volume (V) work component in the 

total energy of the system. 

Assumptions 

Substances vary in their ability to lower the activation energy of a chemical 

system without becoming part of the products produces by the chemical 

reactions.    

Assumptions 

The more freedom of motion the molecules in the substances of a chemical 

system have, the more likely they are to be properly aligned and produce a 

chemical reaction. 

Claim 

The greater the restriction in movement of the molecules in the substances, 

the in a chemical system the less likely they are to be properly aligned and 

produce a chemical reaction. 

Assumption 

Certain additional substances (catalyst) can reduce the required activation 

energy of a chemical reaction without changing the end product.   

Claim 

Rate of reaction tends to decline during the chemical reaction as the 

concentration of reactants to products declines. 

Claim 

Rate of enthalpy change = rate of chemical reaction as change in enthalpy 

depends on the amount of material that under goes change in the chemical 

reaction.   

Assumption 
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4.2.2 Modeling Question for Chemical System 

Thermochemistry is being used a medium of study to address the dissertation research 

question.   As such, the following modeling question is formulated study emergence in a 

chemical system (i.e., a thermodynamic system):   

What are the factors in chemical systems that cause a chemical reaction and affect the 

occurrence of emergents? 

4.2.3 Conceptual Model for Endothermic Reactions in Chemical Systems 

Conceptual models capture a consistent sub-set of the reference model that can be 

implemented in a simulation.   A subset from the reference model in  form the basis for 

developing a conceptual model in the form of a causal loop diagram (CLD). CLDs are a System 

Dynamic modeling concept that represents the causal relationships between system variables, 

and graphically depicts the behavior of the system (Sterman, 2000).  They are especially relevant 

to the modeling question in this paper given that the essence of the research question concerns 

causal relationships. The variables for the chemical reaction CLD are defined in Table 11. 

 

 

Variable Name and Definition Symbol Relationship:  

(+) = Increase;  

(-) = Decrease  

Activation Energy: Minimum energy required to cause a chemical reaction. Ua +Ua + ∆Htp 

Catalytic Volume: Amount of substance in a chemical system that lowers the 

activation energy but does not react with the other substances. 

Vc +Vc-Ua  

Table 11. CLD Variables and Behaviors for Chemical reactions 
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Table 11 (continued) 

Concentration: Volume of a substance relative to total volume of substances. C +C+Rr 

Energy Differential: Available heat to transfer from the environment to the system Qe +Qe + Rr 

Energy Transferred Gap:  The remaining heat energy that was available to be 

received (Ue-Ui) but not absorbed by the system.   

Qg +Qg-Xr 

Energy Transferred:  Heat energy transferred from the system to the environment. Qs +Qs -Qg 

Enthalpy Change: Change in system total energy. ∆H +∆H+ER 

Enthalpy Ratio: The fraction of the  tipping point that the system has reached for 

chemical reaction to occur 

ER +ER  -Xr 

Enthalpy Tipping Point: Difference between the Activation Energy (Ua) and 

Initial Internal Energy (Ui).  

∆Htp +∆Htp- Hr 

Initial Internal Energy: Internal energy of the system at t=t0 Ui +Ui -Qg, -

∆Htp 

Internal Energy: Internal energy of the system at t >t0. U +U +Rr, +Xr 

Molecular Freedom: Ability to move and change orientation. F +F+Rr 

Receptions Rate: Amount of energy flowing into the system from the environment 

per unit of time. 

Rr +Rr +∆H 

Receptions Time: The fractional amount of time over which energy is absorbed 

(received and retained) by the system. 

Rt +Rt- Rr 

Temperature:  Average heat energy in the system. Ts + TS+ Rr 

Xfer (Transfer) Rate:  Amount of energy flowing into the system from the 

environment per unit of time. 

Xr +Xr-U 

Xfer (Transfer) Time: The fractional amount of time over which energy is 

transferred from the system to the environment. 

Xt Xt- Xr 
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The structure of a system determines its behavior (Sterman, 2000).  The Vensim 

modeling & simulation software provided a system of logic to structure CLD (Ventana Systems, 

2016).  The CLD represent the structure by using (+) signs on arrows to indicate that the 

originating variable causes a positive change in the variable at the end of the arrow. A negative (-

) signs indicates that the originating variable causes a negative change in the variable at the end 

of the arrow. Based on the variables and causal behaviors in, a CLD for endothermic reactions 

has been constructed and is depicted in Figure 9. 
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Figure 9. Conceptual Model of Endothermic Chemical Reactions 
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The CLD is best understood by examining each causal loops in isolation.  A 

causal loop is a continuous sequence of variables connected by arrows.  Loops that 

reinforce behavior are indicated with the letter R in a circular arrow.  Loops that provide 

balance and prevent the continuous growth of a behavior are indicated with the letter B in 

a circular arrow.    

 B1, Transferring energy from the environment to the system.  The chemical 

reaction process begins with an input from an external energy source (Ue): a new 

substance, another chemical system, exposure to a heat source, etc. The energy 

differential (Qe) between the system’s initial internal energy (Ui) and the external 

energy source (Ue) is the amount of energy that is available to be transferred to 

the system. The system requires a certain amount of time to receive each fraction 

of energy (i.e., absorption time).   The greater the differential and the shorter the 

absorption time (At), the faster the rate of absorption (Ra).  Ra increases with 

increases in concentration (C), molecular freedom (F), and system temperature 

(T).  Given enough time and without the continuous addition of more energy from 

an external source, the system will receive all available energy, and the energy 

differential will reduced to zero. 

 R1, Receiving energy from the environment.  When the chemical reaction 

begins at time (t) =0, the energy differential (i.e., the potential energy to be 

absorbed) is at its maximum; internal energy (U) is not changing, i.e., change in 

enthalpy (∆H) is at its minimum; and the system is in an initial state of 

equilibrium (energy absorbed =energy transferred and ∆H = 0).   During the 

chemical reaction the system receives the energy differential (Qe) causing 
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increases in the system’s internal energy (U) such that the system is no longer in 

equilibrium (energy absorbed ≠ energy transferred and ∆H ≠ 0).   The greater the 

energy differential the greater the internal information growth in magnitude (∆H) 

and rate (Ra).  The increasing internal information and ∆H continues to grow and 

grow faster until there is no energy differential to absorb.    

 R2, Bending bonds (approaching the activation threshold).  As the energy 

differential continues to be absorbed by the system, the enthalpy change (∆H) 

approaches the tipping point required for a chemical reaction to occur.  ∆H 

approaching the tipping point (∆Htp) indicates that the bonds between the 

molecules maintaining the current configuration of the chemical system are 

bending.   If ∆H > ∆Htp, i.e., the enthalpy ratio (ER) >1, the bonds will break, and 

a chemical reaction will occur.  If the internal energy (U) does not reach the 

activation threshold (Ua), ∆H will be <∆Htp, Hr will be < 1, and a chemical 

reaction will not occur.   

 B2, Returning the system to equilibrium.  The chemical system receives and 

transfers energy.   Initially the R1 loop is dominant and the system is receiving 

more energy than it transfers (i.e., ∆H is increasing).  A tipping point will occur 

where the system will begin to transfer more energy than it absorbs.  At that point 

dominance will shift to the B2 loop where ∆H and the system internal energy will 

decline until the system returns to equilibrium.  For each fraction of energy, a 

certain amount of time to transfer (Xfer) to the environment is required to 

complete the chemical reaction and return the system to equilibrium.  The rate of 
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energy that transfers (Xfers) out of the system as it returns to equilibrium is the 

Xfer rate (Xr).   

 B3, Transferring energy to the environment.  Chemical systems will receive 

information as they interact with their environment and other chemical systems.   

Initially the gap between the available energy to be receive and the energy 

transferred back to the environment is large and the transfer rate (Xr) of energy 

back to the environment is high.   If the enthalpy tipping point (∆Htp) is not 

reached, enthalpy ratio (Hr) will be < 1, and the chemical reaction will not occur.  

The system will continue to transfer energy back to the environment until the gap 

between energy transferred and available energy to be received is zero (Qg = 0 at 

tx) and the interaction ends.  However, if the peak of ∆H > ∆Htp, Hr will be > 1 

and a chemical reaction will occur.  If a chemical reaction occurs some of the 

available energy will be absorbed by the system and the balanced will be 

transferred back to the environment, i.e., Qg>0 at tx.    The addition of catalytic 

substances (Vc) can lower the activation threshold (Ua) and increase the 

likelihood that ER will be > 1 between t1 and tx. 

  The conceptual model for chemical reactions in chemical systems is used in 

chapter five to develop a theory of emergence in engineered systems.     
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CHAPTER 5 

THEORY DEVELOPMENT 

 

In the chapter Three, a literature review, theories and definitions of emergence are 

summarized in terms of their common classes and subclasses of an ontology (see Figure 

5) Based on the ontology, operational definitions of emergents (the noun) and emergence 

(the verb) in the physical domain are proposed: 

a) Emergents are system effects that are approximately underivable based on 

system components and their interrelationships.   

b) Emergence is the action of producing system effects that are approximately 

underivable based on system components and their interrelationships.  

The concept of emergence in the context of engineered systems was also explored.  

System states in the undesignable state space were shown to be underivable in terms of 

system components and their relationships, and are therefore emergent.   However, there 

is currently no theory that defines the set of factors in engineered systems that affect the 

occurrence of emergents.   In Chapter Four, a modeling methodology (MS-SDF) was 

used to: a) construct a reference model of what is known and assumed about chemical 

reactions; and b) construct a conceptual model that defines the relationships of the system 

variables leading to endothermic reactions in chemical systems.     

An initial theory of emergence in engineered systems is now developed in chapter 

five. Analogies between endothermic chemical reaction and emergence in engineered 

systems are used to transferring knowledge about the factors affecting chemical reactions 

to identify factors in engineered system that affect emergence.  Analogical reasoning is 
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used to build a conceptual model for emergence in engineered systems based on the 

conceptual model of endothermic chemical reactions.  A theory of emergence in 

engineered system is then derived from its conceptual model.   

 

5.1  Analogical Reasoning 

Analogies are basically explanations about entities or phenomena based on 

knowledge from a different domain (Bartha, 2010; Gentner, 1983). Analogical reasoning 

is the process of drawing inferences using analogies.   Analogies are effective 

mechanisms for advancing knowledge.  They are an essential aspect in discovering 

meaningful scientific theories and have been used in a variety of applications: Particle 

Physics (Nambu & Jona-Lasinio, 1961); Artificial Intelligence (Eremeev & Varshavsky, 

2005); Engineering Design (Kalogerakis et al., 2010); Electrical Engineering (Li, 2012); 

Telecommunication (Martinez & Carmen, 2012); Biometric Engineering (Cheong, 2013); 

Shared Awareness (Kovacic, 2013); Information Systems (Jog, 2015).  In each of these 

examples, knowledge from a source domain was transferred to a target domain and used 

to draw conclusions and make inferences.   A detailed discussion on analogical reasoning 

is provided in the methodology section. 

As discussed in Chapter One, thermochemistry has broad applicability as a source 

of analogies to explain concepts; a well-established precedence in explanations of 

emergence; and general correspondence between characteristics of engineered systems. 

However, a valid transfer of knowledge between domains requires more formal 

justification.      The transfer of knowledge between domains is possible when there is 

correspondence between the relevant structural elements of the domains.  The structure of 
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a domain includes the: properties; relationships; patterns; constraints; roles; and concepts 

that characterize the objects in the domain.  Transferring knowledge from a source 

domain to a target domain is valid to the extent there is correspondence between the 

relevant domain elements.   A summary of basic rules and assumptions for structural 

mapping are listed in Table 5. 

 

 

Criteria  Description Source 

Domains System of objects, attributes of objects, and object relationships. Gentner (1983) 

Domain 

Knowledge 

Represented with predicate logic; a system of clauses that describe 

objects in the domain. Predicates are: a) attributes when the 

argument is a single object; b) relationships when the argument is 

two or more objects.     

Gentner (1983) 

1 to 1 

Mapping 

Elements in one domain must correspond to a single element in 

another domain. 

Gentner & 

Markman (2006) 

Parallel 

Connectivity 

If two predicates correspond their arguments must also correspond. Gentner & 

Markman (2006) 

Pragmatic Only those elements in the domains that are relevant to the purpose 

of the analogy is considered in the structural mapping. 

Gentner (1983) 

Semantics Predicate describing structural element must have similar meaning 

but do not have to be identical. 

Gentner (1983) 

Systematicity Highest preference is given to structural elements that have causal, 

mathematical, or other functional implications. 

Gentner (1983);  

Lee & Holyoak 

(2008) 

Table 5. Structural Mapping Criteria 
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Analogies are not absolute; they exist on a continuum from weak to strong.  The 

more an analogy fits the structural mapping criteria the stronger the analogy and the 

stronger case for applying analogical reasoning.   This is especially true for the 

Systematicity criteria for structural mapping.  Correspondence between functional 

elements of a domain makes the greatest contribution to establishing the relationships as 

a strong analogy.  Formally stated, the proposition for the theory of the scientific analogy 

is:  if the structural components B= {b1, b2, b3,…bn} of system B describe the 

relationships and attributes of the parts in system B, can be mapped to structural 

components T= {t1, t2, t3, ….tn} of system T; then knowledge about system B can be 

used to explain system T.   The conclusions holds to the extent that the structural 

components in the mapping are relevant to the phenomena or entity to which the 

knowledge is being applied (i.e., they satisfy the pragmatic criteria for structural 

mapping).  

 

5.1.1 Structural Mapping 

Analogies are used to explain emergence in engineered system.   Given this 

purpose, the ontology of emergence provides a rational framework for identifying the 

relevant structural elements of the domains for structural mapping.  Recall from Section 

3.1 that there are two classes and eight subclasses that define emergence:  Phenomena 

Characteristics (Type, Perspectives, Logical Relationships, Indicators); and System 

Characteristics (Structure, Temporality, Knowledge Constraint, Domain).    The source 

domain for knowledge in the analogy is endothermic reactions in chemical systems. The 

target domain for applying the knowledge is emergence in engineered systems.     
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Elements from the source and target domains are defined for each of the seven subclasses 

of the emergence ontology.  Each element is defined with a predicate logic statement: 

• Attribute statements (A) define a property or characteristic for a single one 

element or group of elements. 

• Relationship statements (R) defines the cause-effect interaction between two or 

more elements or groups of elements :  

For example, Temporality is a subclass the ontology of emergence. Engineered systems 

and chemical system both change over time.  Therefore the predicate statements would be 

chemical system =CHANGE (over time [chemical system]) and engineered system 

=CHANGE (over time [engineered system]).   In this case both predicate statements are 

attributes and there is correspondence between the domains.    

The matrix in Figure 10 captures the mapping between the domains for 

endothermic reactions in a chemical systems and emergence in an engineered systems. 
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Figure 10. Structural Mapping Matrix for Chemical System vs Engineered Systems
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One of the semanticity elements belongs to the indicator subclass of the 

emergence ontology.   In addition to mapping the predicate statements for the indicator 

elements, graphical representations are depicted in Figure 11. 

 

 

   

Figure 11. Indicators of Endothermic Reactions and Emergence 

 

 

Increasing entropy is an indicator of endothermic reactions (Brown et al., 2014), and is 

also an indicator of emergence (Crutchfield, 1994; Holland, O.T. 2012; Johnson IV, 

2013).  While the formulas are different, conceptually they represent the same concept of 

entropy as a measure of disorder and uncertainty. 

 

5.1.2 Valid Basis for Theory Development 

Analysis of the structural mapping matrix indicates that: 1) There is correspondence 

between the domains.  Each structural element in the endothermic reaction domain has a 

predicate and argument that maps directly to a predicate and argument in the emergence 

in engineered systems domain (i.e., one-to-one relationship).  2) There is coherence with 
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all requirements of the structural mapping criteria in Table 5; 3) The majority (7/9) of the 

elements have causal, functional or mathematical relationships; which are the most 

important types of structural elements (i.e., the systematicity mapping criteria in Table 5).   

It is concluded that analogies from the domain of endothermic reactions in chemical 

systems would be strong and a valid source for knowledge transfer to then domain for 

emergence in engineered systems.  In the next sections, specific analogies are developed 

between the causes of endothermic reactions and analogous factors in engineered 

systems. 

 

5.1.3 Structural Mapping for Causal Factors  

Some elements in the system structure have trivial differences between chemical and 

engineered systems and do not require an extensive mapping and analogical reasoning:  

 Volume or number of substances in a chemical system is equivalent to the quantity 

or number of a component(s) in an engineered system. 

 Concentration is the amount of one or more items relative to the total number of 

items in the system.  Greater concentration results in great number of contacts or 

interaction.  The concentration concept is the same for substances in a chemical 

system and components in engineered system  

 Time in chemical systems is exactly the same as time in an engineered system. 

There are other structural concepts in chemical systems that are non-trivial and 

require scientific analogies to transfer knowledge about the behavior of the chemical 

system to the engineered system.    System engineering concepts were identified that 

have functional similarities to the causal factors in endothermic reactions.  The analogical 
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reasoning method was used to establish analogies and make inferences about cause-effect 

factors in engineered systems.  The analogous relationships are: 1) energy vs information; 

2) temperature vs. interoperability; 3) molecular freedom vs component degrees of 

freedom; and 4) volume of catalyst vs variety of regulators.  Scientific analogies for these 

concepts are discussed in the following section.  The analogies are defined by functional 

descriptions of the elements in the source domain (causal factors for endothermic 

reactions), and target domain (engineered systems). 

 

5.1.4 Energy vs Information  

Source Domain: Properties of a chemical systems are a function of the configuration of 

its molecules (i.e., its parts).  Chemical systems exchange energy when they interact with 

other systems.  Energy is the capacity to make a change in an entity’s spatial position 

relative to other entities (i.e., configuration), and to change its capacity to transfer heat.   

Predicate statements: 

1) CAUSE (molecular configurations, system properties) 

2) EXCHANGE energy (molecules, external systems, environment) 

Target Domain: Beer (1979) defines information as actionable interpretation of data that 

causes a change in the systems state; where data is a statement of fact about a person, 

place or thing.  Sunik (2011) defines information as the value of a variable in an 

algorithm that determines the “changes and movements” (i.e., the configuration) of 

components. The configuration of components in a system determine it properties.   The 

change determined by the variables in the algorithm are actions that causes  a system to 

have form, content, direction, nature,  etc. (i.e., properties) that it would otherwise not 
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have if the object were left undisturbed. Deacon (2007) defines information in context of 

regularly occurring processes and exchanges between entities as they interact with each 

other.    

Predicate statements: 

3) CAUSE (component configurations, system properties) 

4) EXCHANGE information (components, external systems, environment) 

 

5.1.5 Temperature vs. Interoperability 

Source Domain: Energy in a chemical system is heat. Heat is the energy that causes a 

change in the temperature (T) of the system.  A positive change in temperature increases 

the rate of the chemical reaction between systems by increasing the frequency and force 

at which molecules in the chemical system collide; which causes bonds between 

molecules in the system to break and eventually reconfigure and produce new system 

properties. 

Predicate statements: 

5) INCREASE [INTERACTION (molecules, external systems, environment)] 

6) CAUSE  (new molecule configurations, new system properties) 

Target Domain: Interoperability is “the ability of two or more systems or elements to 

exchange information and to use the information that has been exchanged” (IEEE, 2000, 

as cited in Morris et al. (2004); Tolk, et al. (2003).  Interoperability is accomplished by 

establishing a common understanding of the information used by the participants in the 

exchange.  Greater interoperability leads to more interactions and information exchange.   

The consequence of higher levels of interoperability and the successful exchange of 
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information is a change in systems state, and the acquisition of new system functions/ 

capabilities (i.e., new system properties). 

Predicate statements for interoperability in an engineered system: 

7) INCREASE  [INTERACTION (components, external systems, environment)] 

8) CAUSE (system states, new system properties) 

 

5.1.6 Molecular Freedom vs Component Degrees of Freedom 

Source Domain: Substances in a chemical system can take on one of four physical states 

(or types): solid, liquid, gas, or plasma.  The physical state of substances influence the 

freedom of movement among its molecules.  The greater the molecular freedom of 

movement the more likely the molecules will collide in the required orientation to 

facilitate the exchange of energy, the breaking of bonds, and the forming of new 

configurations (i.e., a chemical reaction). 

Predicate statements: 

9) INCREASE [EXCHANGE (molecules, systems, environment)] 

10)  CAUSE [FORM (new molecule configurations, new system properties)] 

Target Domain: There are many types of components in an engineered system, including 

but are not limited to hardware, software, people, equipment, and processes. The 

components are differentiated by the number of variables that define them.   The degrees 

of freedom (or distinct number of possible states) for the system is a function of the 

number of component types, and the number of variables per component (Ashby, 1956).   

Systems exchange information (i.e., communicate) by sending and receiving messages.  

Each message has distinct possibilities based on a function of variables that determine its 
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meaning.  The successful exchange of information exist to the extent the system or 

component receiving the message has degrees of freedom that are equal to or greater than 

the degrees of freedom for the message being sent.   

Predicate statements: 

11) INCREASE [EXCHANGE (components, external systems, environment)] 

12) CAUSE  (new system states, new system properties) 

 

5.1.7 Volume of Catalyst vs. Variety of Regulators 

Source Domain: Increasing the volume of certain substances (catalyst) lowers the 

activation energy (Ua) threshold required to cause a chemical reactions. As the threshold 

is approached, there are more interactions between the molecules in the chemical system 

and between the system and its environment (or other systems).  This increased 

interaction causes energy to be exchanged and the rate (i.e., speed) of chemical reaction 

to grow exponentially.   As a function of reductions in Ua, Catalyst cause the likelihood 

of a chemical reaction to increase, and new system configurations and properties to form. 

Predicate statements: 

13) CAUSE [EXCHANGE (molecules, external systems, environment)] 

14) CAUSE (new molecule configurations, new system properties) 

Target Domain: Some components in engineered systems act as regulators that limit the 

results (i.e., states) of system and component interactions by blocking the flow of 

information.  Ashby’s (1956) law of Requisite Variety basically states that “… only 

variety can destroy variety”.   Variety is the number of distinct possibilities.   The variety 

of outcomes is limited (i.e., regulated) to the extent that the variety of the regulator (Vr) 



www.manaraa.com

82 

 

 

is greater than the variety of the inputs. Requisite variety influences the occurrence of 

new system states and properties by essentially creating a threshold beyond which the 

variety of a transmitted information message must exceed in order to have a successful 

exchange of information and change in system state.  In other words the greater (Vr) is 

relative to the variety of inputs, the lower the variety or number of possible system states; 

and the lower (Vr) is relative to the variety of inputs the greater the number of possible 

system states.     

Predicate statements: 

15) CAUSE [EXCHANGE (components, external systems, environment)] 

16) CAUSE (new system states, new system properties) 

 

5.1.8 Analogies for Causal Factors  

Analogies of causal factors for endothermic reactions and engineered systems can 

be formally represented by mapping their structures using the predicates statements from 

the previous sections.  An analogy is stated and a supporting structural map is presented 

in Table 12 for four structural concepts of chemical and engineered systems: 1) energy 

vs. information;   2) temperature vs, interoperability; 3) molecular freedom vs. 

component degrees of freedom; and 4) volume of catalyst vs. variety of regulators.   
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Analogy 2nd Order Predicate 1st Order Predicate Chemical System Arguments Engineered System Arguments 

1) Information is like 

energy. 

 CAUSE molecule configurations, system properties components, system properties 

 EXCHANGE  molecules, external systems, environment components, external systems, 

environment 

2) Interoperability is 

like temperature. 

INCREASE INTERACTION molecules, external systems, environment components, external systems, 

environment 

 CAUSE new molecule configurations, new system 

properties 

new system states, new system 

properties 

3) Degrees of freedom 

is like molecular 

freedom. 

INCREASE  EXCHANGE molecules, external systems, environment components, external systems, 

environment 

 CAUSE new molecule configurations, new system 

properties 

new system states, new system 

properties 

4) Variety of 

regulators is like 

volume of catalyst. 

CAUSE EXCHANGE molecules, external systems, environment components, external systems, 

environment 

 CAUSE new molecule configurations, new system 

properties 

new system states, new system 

properties 

Table 12. Structural Mapping for Engineered to Chemical System Analogies 
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An analysis of the mapping in for the Engineered to Chemical system analogies  

indicates that there is: 1) correspondence between the domains; 2) coherence to the 

structural mapping criteria in Table 5; and 3) the majority of the mapping elements have 

causal or mathematical relationships.   Based on these observations it is valid to conclude 

that the analogies are strong.   The analogies established between chemical and 

engineered systems provide the justification for transferring knowledge about behaviors 

between the two domains.   The author posits that an initial theory of emergence in 

engineered systems can be constructed from the behaviors depicted in the conceptual 

model for endothermic reactions in chemical systems (Figure 9 causal loop diagram).    

 

5.2 Conceptual Model for Emergence in Engineered Systems 

In chapter four, chemical reactions were used to explain endothermic reactions in 

chemical systems.    Analogical reasoning is used to define the chemical reaction CLD 

variables () in terms of engineered system variables (). The variables are listed in 

alphabetical order of engineered system variables. 
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Chemical System Variables Engineered System Variable *Variable 

Type 

Relationship:  

(+) = Increase; 

(-) = Decrease  

Activation Energy (Ua): 

Minimum energy required to 

cause a chemical reaction. 

Activation Information 

Threshold (Ia): Minimum 

information required to cause 

emergence in an engineered 

system. 

Initial Value 

Constant 

+Ia + ∆Itp 

Catalytic Volume (Vc): The 

amount of substance in a 

chemical system that lowers the 

activation energy but does not 

react with the other substances. 

Variety of Regulators (Vr): The 

degrees of freedom for 

components that regulate outputs 

/ states / behaviors of other 

components. 

State 

Constant 

-Vr-Ia  

Concentration (C): The 

additional volume of a 

substance relative to total 

volume of substances. 

Component Concentration 

(Cc): The additional volume of a 

component relative to total 

volume of components. 

State 

Constant 

+Cc+Rr 

Energy Differential (Qe): 

Available heat to transfer from 

the environment to the system 

Information Differential (Id): 

Available information for transfer 

from the environment to the 

system. 

Stock +Id + Rr 

Energy Transferred (Qx):  

Heat energy transferred from 

the system to the environment. 

Information Transferred (Ix): 

Information transmitted from the 

system to the environment as the 

system returns to steady state.  

Stock +Ix - Xr 

 

Table 13. CLD Variables for Emergence in Engineered Systems 
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Table 13 (continued) 

Energy Transferred Gap 

(Qg):  The remaining heat 

energy that was available to be 

received (Ue-Ui) but not 

absorbed by the system.   

Information Transferred Gap 

(Ig):  The remaining 

information that was available 

to be received (Ie-Ii) but not 

absorbed by the system.   

Auxiliary +Ig-Xr 

Enthalpy Change (∆U): 

Change in system total energy  

Information Change (∆I): 

Change in system total 

information. 

Auxiliary +∆I+IRE 

Enthalpy Ratio (Hr): The 

fraction of the  tipping point 

that the system has reached for 

chemical reaction to occur 

Information Ratio of 

Emergence (IRE): The 

fraction of the  tipping point 

that the system has reached for 

chemical reaction to occur 

Auxiliary +IRE-Xr 

Enthalpy Tipping Point 

(∆Htp): The difference 

between the Activation energy 

(Ua) and Initial Internal Energy 

(Ui). 

Information Tipping Point 

(∆Itp): The difference between 

the Activation Information 

Threshold (Ia) and Initial 

Internal Information (Ii) 

Auxiliary +∆Itp- IRE 

External Energy (Ue):  

Energy that exist outside of the 

system 

External Information (Ie):  

Information that exist outside of 

the system 

Initial Value 

Constant 

Ie+Id 

Initial Internal Energy (Ui): 

Internal energy of the system at 

t=t0 

Initial Internal Information 

(Ii): Internal energy of the 

system at t=t0 

Initial Value 

Constant 

+Ii -Ix, -∆Itp 
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Table 13 (continued) 

Internal Energy (U): The 

system’s total energy at t >t0. 

Internal Information (I): The 

system’s total energy at t >t0. 

Stock +I +Rr, +Xr 

Molecular Freedom (F): 

Ability to move and change 

orientation. 

Degrees of Freedom (Df): 

Ability of components to move 

and change orientation. 

State Constant  +Df+Rr 

Reception Rate (Rr): The 

amount of energy flowing into 

the system from the 

environment per unit of time. 

Reception Rate (Rr): The 

amount of information flowing 

into the system from the 

environment per unit of time. 

Flow +Rr +∆I 

Reception Time (Rt): The 

amount of time over which 

energy is absorbed (received 

and retained) by the system. 

Reception Time (Rt): The 

fractional amount of time over 

which information is absorbed 

(received and retained) by the 

system. 

Time Constant +Rt- Rr 

Temperature (T):  Average 

heat energy in the system 

Interoperability (Int): The 

degree that the system can 

exchange (absorb /transfer) 

both quantity and quality of 

information.   

State Constant + Int+ Rr 

Xfer (Transfer) Rate (Xr):  

The amount of energy flowing 

into the system from the 

environment per unit of time. 

X-mission Rate (Xr):  The 

amount of information flowing 

from the system to the 

environment per unit of time. 

Flow +Xr-∆I 
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Table 13 (continued) 

Xfer (Transfer) Time (Xt): 

The amount of time over which 

energy is transferred from the 

system to the environment. 

X-mission (Transmission) 

Time (Xt): The fractional 

amount of time over which 

information is transferred from 

the system to the environment. 

Time Constant +Xt- Rr 

 

* Variable Type is related to the simulation model discussed in Section 6.1.3 

  

 

The structure of a system determines its behavior (Sterman, 2000).  The causal 

loop diagram (CLD) provides a logical structure for the system by using (+) / (-) signs on 

arrows to indicate the direction of the causal relationship of the variable joined by the 

arrows.   Based on the variables and causal behaviors in, a CLD for emergence in 

engineered system has been constructed and is depicted in Figure 12 . 
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 Figure 12. Conceptual Model of Emergence in Engineered Systems 
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The variable relationships described in  and the CLD in in Figure 12 yield several 

formulas that provided additional insight into concepts of behavior in the engineered 

system: 

• The Activation Information Threshold (Ia) is the amount of information required 

to cause the interactions in the engineered system to have an emergent effect.  The 

difference between the engineered system’s Initial Internal Information (Ii) and 

the required threshold (Ia) is the Information Tipping Point (∆Itp).    

 ∆Itp = Ia – Ii       [5.1]  

• The information Ratio of Emergence (IRE) is an indicator that there has been a 

sufficient change in the system’s Information (∆I) to cause an emergent effect.   A 

sufficient change would be Maximum ∆I > than the Information Tipping Point 

(∆Itp).   

 IRE = Max ∆I ÷ ∆Itp > 1     [5.2] 

• The External Information (Ie) is the information that is available to be received by 

the engineered system.   The maximum change that can occur in the engineered 

system’s total Information (Max ∆I) is limited by the amount of external 

information that is available in excess of the system’s Initial Internal Information 

(Ii).   

 Max ∆I = Ie – Ii       [5.3] 
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• From Equations [5.1], [5.2], and [5.3] it is determined that emergent effects are 

dependent on the relationship between the external Information available to be 

received by the engineered system (Ie) and the threshold requirement to cause an 

emergent effect (Ia).   The relationship between (Ie) and (Ia) is defined by using 

equations [5.1] and [5.3] to make substitutions in equation [5.2]: 

   IRE = Max ∆I ÷ ∆Itp         [5.2] 

 IRE = Max ∆I ÷ ∆Itp  > 1 

                                           (Ie – Ii) ÷ (Ia – Ii) > 1 

                                                                e – Ii > Ia – Ii 

            Ie > Ia 

The relationship between (Ie) and (Ia) will be referred to as the Activation Ratio 

for Information (ARI):  

   ARI = Ie ÷ Ia                 [5.4] 

• As the system is receiving information it is also transferring it.   If the system 

receives information faster than it transfers, the change in information (∆I) will be 

positive.  ∆I will occur at a faster rate to the extent that the fractional Reception 

Time (Rt) is greater than the fractional X-mission time (Xt).   The Reception to X-

mission multiple (RXM) is defined by equation [5.5]. 

RXM = Rt ÷ Xt           [5.5] 

 

 In the next section, an initial theory of emergence in engineered systems is 

derived based on: variable relationships described in; the conceptual model depicted by 

the CLD in Figure 12; and the conceptual formulas [5.1] - [5.5].    
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5.3 A Proposed Theory of Emergents in Engineered Systems 

Operational definitions of emergents and emergence in the physical domain are 

derived from the ontology developed in Chapter three and Appendix A are: 

a) Emergents are system effects that are approximately underivable based on 

system components and their interrelationships.   

b) Emergence is the action of producing system effects that are approximately 

underivable based on system components and their interrelationships.  

The casual loop diagram in Figure 12 is a conceptual model and provides a system of 

logic by which propositions about emergence in engineered systems can be constructed. 

The propositions in Table 14 are claims about the factors and behaviors of systems where 

emergent effects are produced.  The statements are supported by the logical structure of 

the conceptual model and associated formulas. 

 

 

 Propositions for Emergence in Engineered Systems 

1) As the Information Ratio of Emergents (IRE) approaches 1, the probability of emergence 

increases. 

2) Activation Ratio for Information (ARI) = External Information (Ie) ÷Activation Information 

Threshold (Ia) >=1 is a necessary condition for IRE>=1 (i.e., emergence to occur). 

3) As the Information Ratio of Emergents (IRE) approaches 1, emergent effects occur faster.     

Table 14. Theoretical Propositions for Emergence in Engineered Systems 
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The main conclusion from the conceptual model and propositions is, emergent 

effects will occur in engineered systems if there is a sufficient change in the total 

information in the system (∆I).  A sufficient change would be ∆I > Information Tipping 

Point (∆Itp).  The Activation Ratio for Information (ARI) is a measure of the available 

information to increase ∆I relative to the information tipping point threshold (∆Itp).  

Basically, increasing ARI will increase the magnitude of ∆I.    Attributes of the system 

that affect effect how fast ∆I increase are: the Reception to X-mission Multiple (RXM); 

component degrees of freedom (Df); and component concentration (Cc); and component 

interoperability (Int).  Another system feature affecting the occurrence of emergence is 

the variety of regulators (Vr) which has a proportional effect on the information 

activation threshold (Ia).  Decreasing Vr will in turn decrease the magnitude of the 

required information tipping point (∆Itp).    

With these relationships in mind a tree diagram is constructed in Figure 13 that 

captures causal factors of emergent effects in engineered systems.   

 

 

 

  Figure 13. Causal Tree of Factors for Emergent Effects in Engineered System  
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The transition to emergents in engineered system is defined by the information ratio of 

emergence (IRE).   

IRE = ∆I ÷ ∆Itp          [5.2] 

As ∆I approaches ∆Itp, the ratio will approach 1.  If IRE ≥ 1 emergent effects will occur.   

The relationship between the information ratio of emergence (IRE) and the factors that 

influence whether or not the engineered system becomes emergent can be defined as a 

tuple of the form [5.6]. 

  IRE [ARI, RXM, Df, Cc, Int, Vr]                              [5.6] 

  Where: 

ARI = Activation Ratio of Information  

RXM = Reception to X-mission Multiple 

Df = Degrees of Freedom for system components  

Cc = Concentration of system components 

Int = Degree of interoperability  

Vr = Variety of the system components that act as regulators 

Increases in ARI, RXM, Df, Cc, or Int, will increase ∆I, while decreasing Vr will 

decreases ∆Htp.   As ∆H approaches ∆Htp, IRE approaches 1and engineered systems 

transitions and produces emergent effects.   Therefore, the system factors for emergent 

effects in engineered systems is defined by the IRE tuple.   

 The author posits that a valid theory of emergence in engineered systems defined 

by: the operational definition of emergents and emergence in the physical domain; the 

Causal Tree in Figure 13; the theoretical propositions in Table 14; and the IRE tuple in 



www.manaraa.com

95 

 

 

equation [5.6].  The validity is supported by the rigor of the methods and framework of 

the rationalist inductive research methodology used to develop it:  

• Analogical Reasoning Method (ARM) – Justifies the transfer of knowledge 

from existing theories in the domain of the research medium of study 

(thermos chemistry) to the new theory in the domain of engineered systems. 

• Theory Building Framework (TBF) – The proposed theory meets the  

standards for “Good Theory” defined in  (Identified Need; Definitions; 

Propositions; Falsifiability; Analogies; Cause-effects ;Rigor; Parsimony; 

Uniqueness; Generalizable; Fecundity).   

• Modeling & Simulation System Development Framework (MS-SDF) – The 

models in the theory follow a structured framework and cohere to system of 

logic.   

In Chapter 6, the theory is explored and elaborations are made through simulation 

experiments.    
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CHAPTER 6 

ELABORATION AND EXPLORATION  

 

An initial theory of emergence in engineered systems was developed in chapter 

five. The theory is valid based on rigor of the process that was followed.  The theory was 

developed from analogies to then conceptual model of endothermic reactions discussed in 

Chapter Four.   The theory consist of: the operational definition of emergents and 

emergence in the physical domain; the Causal Tree in Figure 13; the theoretical 

propositions in Table 14; and the IRE tuple in equation [5.6].  The essence of the theory 

is that emergence in engineered systems is determined by a tipping point defined by the 

Information Ratio of Emergence (IRE) tuple.  

IRE [ARI, RXM, Df, Cc, Int, Vr]                               [5.6] 

  Where: 

ARI = Activation Ratio of Information  

RXM = Reception to X-mission Multiple 

Df = Degrees of Freedom for system components  

Cc = Concentration of system components 

Int = Degree of interoperability  

Vr = Variety of the system components that act as regulators 

In the current chapter, a systems dynamics simulation model is constructed and an 

experiment designed to explore and elaborate on the initial theory.    
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6.1 Simulation Model of Emergence in Engineered Systems 

Qualitative models like the causal loop diagram in Figure 9, are important in the process 

of understanding and explaining cause and effect relationships.   However, these models 

do not capture the real world effects of feedback, time delays, nonlinearities, and 

accumulations over time (Sterman, 2000).   Simulation models overcome these 

limitations by creating virtual worlds with dynamic representations of systems, processes, 

and phenomena over time.  Simulation model is constructed using the logic defined by 

the chemical system conceptual model depicted by the causal loop structure in Figure 9. 

 

6.1.1 The Modeling Questions for Engineered Systems 

The previously presented research question is: 

What are the factors in engineered systems that affect the occurrence of 

emergence, and how are the factors related? 

The modeling questions are derived from the modeling q and the initial theory of 

emergence in engineered systems. The modeling questions are: 

(a) What is the behavior of IRE over the range of values for its variables? 

(b) Are the variables in the IRE tuple significant explanatory factors of 

emergence in the engineered system model? 

(c) How are the variables related to each other and to the occurrence of emergent 

effects in the engineered system model? 

The simulation model is built to answer the modeling questions and study the 

propositions for the initial theory of emergence in engineered systems.    
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6.1.2 System Dynamics Model  

CLDs provide insight into the cause-effect relationships between variables.  They 

offer a logical structure to build and study conceptual models of a system.  However, they 

are qualitative in nature and do not capture quantitative accumulations, rates of change, 

and feedback responses. Simulations models capture these quantitative aspects of the 

system over time.    

There are essentially three major paradigms for simulation modeling (Borshchev, 

2013; Dooley, 2002): Discrete Event; Agent Based; and System Dynamics.  Diallo and 

Tolk compare the simulation paradigm in Table 15 (as cited by Padilla, 2010). 

 

 

Characteristic System Dynamics Agent Based Discrete Event 

Basic building Block  Feedback Loop Agent  Process 

Unit of Analysis Structure  Rules Structure/Queue 

Level of Modeling  Macro Micro Meso (mid-level) 

Perspective Top-Down Bottom-Up Top-Down 

Adaption 

 

Change of Dominant 

structure 

Change of Structure Change of 

Dominant structure 

Mathematical 

Formulation  

Integral Equations Logic  Distributions 

Origin of Dynamics Levels Events Time and Events 

Handling of Time Continuous Discrete Discrete 

Table 15. Comparison among Modeling Paradigms 
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A Systems Dynamics approach was selected for the research in this dissertation 

given the modeling questions are more focused on the system than is constituent entities 

and processes.   To construct a System Dynamic simulation, the CLD must be converted 

into a stock & flow structure (Sterman, 2000).   Stock and flow model structures captures 

the state of the variable and rates of change over time.   Boxed variable (i.e., stocks) 

indicate that value of the variable accumulates and diminishes as a function of its inflow 

and outflow rates.  The state (or level) of a stock is changed by the rate of inflows and 

outflows.  The inflows are indicated by arrows with valve icons that are pointing toward 

the stocks which are the boxed variable.  Outflows are those arrows with valve icons 

pointing away from the boxed variable.   A variable can be an outflow for one stock and 

an inflow for another.  Other variables include: auxiliary variables that change as a 

function of other variables but do not accumulate or lose value; attribute or state 

constants whose values are fixed over time and capture the state of a system attribute; and 

time constants that define the time over which inflows / outflows occur.    

The simulation model of emergence in engineered systems is depicted in Figure 

14.   See Appendix C for model documentation including formulas, initial conditions, 

units, and values ranges for constants.  The attributes of the model that distinguish it as an 

engineered system are the engineering decisions associated with the six IRE factors: 

ARI = Activation Ratio of Information  

RXM = Reception to X-mission Multiple 

Df = Degrees of Freedom for system components  

Cc = Concentration of system components 

Int = Degree of interoperability  
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Vr = Variety of the system components that act as regulators 

The engineering decisions are represented in the simulation model as independent 

variables.
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Figure 14. Simulation Model for Emergence in Engineered Systems 
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The simulation model for emergence in engineered systems has four dynamic loops:  

 B1, Transferring Information from the Environment.  The interaction of the 

engineered system with its environment begins with an input from an external 

information source (Ie).   The information differential (Id) between the system’s initial 

internal energy (Ii) and the external energy source (Ie) is the amount of energy that is 

available to be transferred to the system. The system requires a certain amount of time to 

receive each fraction of information (i.e., reception time).   The greater the differential 

and the shorter the reception time (Rt), the faster the rate of reception (Rr).  Rate of 

reception (Rr) can be increased by increasing component concentration (Cc), degrees of 

freedom (Df), and system interoperability (Int).  Given enough time and without the 

continuous addition of more information from an external source, the system will receive 

all available energy, and the information differential will reduced to zero. 

 R1, Receiving New Information in the System.  When the information exchange begins 

at time (t) =0, the information differential (i.e., the potential new information that can be 

received) is at its maximum; change in the system’s information (∆I) is at its minimum; 

and the system is in an initial steady state (information received =information transferred, 

and ∆I = 0).   Over the course of the interaction, the  system receives external information 

(Ie) causing increases in the system’s internal information (I) such that the system is no 

longer in steady state (information received ≠information transferred from the system to 

the environment (Ix) , and ∆I ≠ 0).   The greater the relative amount of external 

information (Ie) to the required activation threshold for emergence (Ia) the greater the 

internal information growth in magnitude (∆I).   As the system is receiving information it 

is also transmitting information.   ∆I will occur at a faster rate to the extent that the 
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Reception to X-mission Multiple (RXM) is >1.    Internal information continues to grow 

and grow faster until all of the available information (Id) has been received.    

 R2, Potential for Producing Emergents.  As the information differential continues to be 

received by the system, the change in the total information (∆I) approaches the tipping 

point required for emergent effects to occur.  ∆I approaching the information tipping 

point (∆Itp) indicates that the current configuration of the system is changing.   If ∆I > 

∆Itp, i.e., the information ratio of emergence (IRE) >1, emergent effects will occur.  If 

the internal information (I) does not reach the information activation threshold (Ia); ∆I 

will be <∆Itp, IRE will be < 1, and emergent effects will not occur.  The 

 B2, Returning the System to Steady State.  Engineered systems receive and transfer 

energy.   Initially the R1 loop is dominant and the system is receiving more information 

than it transfers (i.e., ∆I is increasing).  A tipping point will occur where the system will 

begin to transfer more information than it receives.  At that point dominance will shift to 

the B2 loop where ∆I and the system internal information will decline until the system 

returns to steady state.  For each fraction of information, a certain amount of time to 

transfer (Xfer) to the environment is required to complete the interaction, and return the 

system to steady state.  The rate of information that transfers (Xfers) out of the system as 

it returns to steady state is the Xfer rate (Xr).   

 B3, Transferring Information Back to the Environment.  Engineered systems receive 

information as they interact with their environment and other systems.   Initially the gap 

between the available information to be receive and the information transferred back to 

the environment is large and the transfer rate (Xr) of information back to the environment 

is high.   If the information tipping point (∆Itp) is not reached, information ratio of 
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emergence (IRE) will be < 1, and emergent effects will not occur.  The system will 

continue to transfer energy back to the environment until the gap between energy 

transferred and available energy to be received is zero (Ig = 0 at tx) and the interaction 

ends.  However, if the peak of ∆I is > ∆Itp, IRE will be > 1, and emergent effects will 

occur.  If an emergent effects occurs some of the available information will be absorbed 

by the system and the balanced will be transferred back to the environment, i.e., Ig>0 at 

tx.    Exactly how much of the information will be absorbed is not known.  For the purpose 

of the simulation, a capacity limit is assumed.  The limit varies according to a random 

distribution.  A “seed” value selected at the beginning of the simulation determines the 

distribution.  It is assumed that the Internal Information (I) will be = > the Initial Internal 

Information (Ii).  This assumption requires that the time to transmit information back to 

the environment (Xt) is greater than the time to receive information (Rt).  Lowering the 

variety of regulators (Vr) can lower the information activation threshold (Ia) and increase 

the likelihood that IRE will be > 1 between t1 and tx. 

To conduct a quantitative study of these relationships, a measurement framework must be 

defined for each variable.   

 

6.1.3 Simulation Variable Measurements 

The logical relationships between the variables that define emergence in engineered systems are 

defined in  and by the system dynamic model depicted in Figure 14.   There are four types of 

variables are in the model and identified in: stocks; auxiliaries; initial value constants; time 

constants; flows; and state constants. A measurement framework is defined and applied to each 

type of variable.  
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The measurement framework has three elements:  

 Measurement scales. There are generally three scales of  measurements that are suitable 

for simulation models: 1) Interval measures are integers preserving relative distance and 

size between measurements but does not have an absolute zero value(Stevens, 1946;); 2) 

Ratio measures are continuous and include fractional values preserving relative distance 

and size as well as an absolute zero value (Stevens, 1946;) ; 3) Fuzzy measures use 

approximate reasoning and compatibility functions to translate linguistic expressions into 

quantitative values where interval or ratio measures are not directly available (Klir & 

Yuan, 1995; Zadeh,1975).     

 Units of measure.  Variables in the simulation model represent real world components 

and attributes of the system being modeled.  Units define what a variable represents (i.e., 

its dimensions), and how they can interact.  For example, the addition of a time variable 

and a volume variable is not a valid function.   However, the multiplication of a time 

variable and a rate variable (i.e., volume per unit of time) is a valid function.  In this 

sense units provide logical constraints in a simulation model.   

 Range of values.  One of the values of computer simulation is the automation of 

functions and calculations.  This allows for large volumes and ranges of data to be 

considered in simulation studies.  Models by definition are abstractions or 

approximations of real world systems.  As an abstraction, limits are placed on how much 

of the real world will be simulated.  The objective in determining the range of values for 

variables is to ensure that a sufficient amount of data is produced such that the 

phenomena can be observed.  The values are assumed for simulation purposes only.  The 

actual values are based on specific systems. 
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A measurement for each variable type for the simulation model is defined: 

Stocks (dependent variable):  Stocks are accumulations of changes in the amount of 

something being measured over time.  Integrating the function that defines the measurement is 

the mathematical process for determining the total accumulation.  The stock variables in the 

simulation model are: Information Differential (Id); Change in information Enthalpy (∆H); and 

Information Transferred (Ix).   Information is measured in magnitudes of bits (Megabytes, 

Gigabytes, Terabytes, etc.).  Consistency of units is more important than the actual units used in 

the mode.  For simulation purposes, a generic term, information units (“I-Units”), is used to 

represent information.   The range of possible values for I-Units is all positive real numbers.    

The range of possible values are any positive real numbers.  The relative values of the stocks to 

each other is more important than their actual values.   

Initial value constants (independent variable):  Constants are essentially very slow 

moving stocks.  They are accumulations that change at a rate outside of the observable time 

frame of the simulation.  They are used to establish the initial values for the information stocks 

and auxiliary variables in the simulation. There are three initial value constants: External 

Information (Ie), Initial Internal Information (Ii); and Initial Activation Information Threshold 

(Ia@t=0). The relationship between (Ie) and (Ia@t=0) is defined by equation [5.4], the 

Activation Ratio of Information (ARI) and has dimensionless units.     Information is measured 

in magnitudes of bits (Megabytes, Gigabytes, Terabytes, etc.).  Consistency of units is more 

important than the actual units used in the mode.  For simulation purposes, a generic term 

information units (“I-Units”), is used to represent information measurements for (Ii), (Ie), and 

(Ia@t=0).   The range of possible values for I-Units is all positive real numbers.    
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   Auxiliaries (dependent variable): The auxiliary variables are functions of the stocks and 

initial value constants.  These variables are used to provide additional insight into behaviors that 

influence or occur as a result of accumulations of stock values.    There are six auxiliary 

information variables: External Information (Ie); Information Tipping Point (∆Itp); Change in 

Information (∆I); the Information Activation Threshold (Ia); Maximum Absorption; and Ix Gap 

(Ig).   The auxiliaries are measures of information in I-Units with a range of possible values 

including all positive real numbers.   There is also an auxiliaries that is a dimensionless ratios: 

Information Ratio of Emergence (IRE) is also an auxiliary variable.   It is dimensionless with 

possible values including all positive real numbers.    

Time constants (independent variable): Systems require a certain amount of time to 

change states. Information delays are an especially important concept in modeling dynamics of 

systems.  It takes time for the components in the system to receive, process and react to 

information.    Time constants capture this concept.     Any time units (minutes, seconds, hours, 

days, etc.) are acceptable in the simulation.   The exact units are not important in the model, 

however, minutes are used to execute the simulation.   There are two time constants: Reception 

Time (Rt); and X-mission (Transmission) Time (Xt). The relationship between Reception and X-

mission time is defined by Equation [5.5], Reception to X-mission Multiple (RXM), and has 

dimensionless units.   All Time constants can be any positive real number. 

Flows (dependent variable): Flows are changes or derivatives per units of time in the 

level of the stock variables.  Units of time are defined by the time constants.  The units of 

measure for the flow variables are then I-Units per minute.   The simulation model has two flow 

variables:  Reception Rate (Rr); and X-mission Rate (Rx). The range of possible values are any 

positive real numbers.   
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State constants (independent variable): Concepts that effect changes in state variables 

and auxiliary variables but do not have clearly defined mathematical relationships are 

represented by state constants.   Even though a precise mathematical function may not be known, 

the general relationships between the concept and the variables it affects (i.e., positive / negative 

causation and magnitude) can be defined.  State constants are linguistic variables where words 

are used to express how much the constant is consist with the concept or a requirement.  For 

example, someone who is very tall is more consistent with the concept of begin tall than 

someone who is moderately tall.  The boundaries for consistency with a concept are fuzzy and 

are determined by a compatibility function.  Compatibility functions determine the degree that 

the constant’s value indicates membership in a conceptual category base on being consistent with 

the category’s requirements. For example, someone whose height is greater than six feet may be 

linguistically “moderately tall” and assigned a compatibility value of .7 indicating its degree of 

membership in the category of being “tall”.   Compatibility values for each state constant are real 

numbers from 0-1 on a ratio scale with a corresponding linguistic value indicating it 

compatibility with its conceptual category.  The quantitative and linguistic values for the state 

constants have dimensionless (Dmls) units are defined in Table 16 : Degrees of Freedom; 

Component Concentration; Interoperability; and Variety of Regulators.   
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State Constant Compatibility Value Linguistic Value 

Component Concentration (Cc) 0 < X  ≤ .1 Low Compatibility 

.1 < X  ≤ .5 Moderate Compatibility 

.5 < X  ≤  1 High Compatibility 

Degrees of Freedom  (Df) 0< X  ≤ .1 Low Compatibility 

.1 < X  ≤ .5 Moderate Compatibility 

.5 < X  ≤  1 High Compatibility 

Interoperability  (Int) 0 < X  ≤ .1 Low Compatibility 

.1 < X  ≤ .5 Moderate Compatibility 

.5 < X  ≤  1 High Compatibility 

Variety of Regulators (Vr) 0 < X  ≤ .1 Low Compatibility 

.1 < X  ≤ .5 Moderate Compatibility 

.5 < X  ≤  1 High Compatibility 

Table 16. State Constant Values 

  

The impact of each state constant is defined by a function.   However, the exact functions are not 

known.   To execute the simulation model, assumptions are made for each constant based on its 

analogy to the four factors in chemical systems that affect the occurrence of chemical reactions 

(see Section 4.1.2):  

• Component concentration (Cc).  Component concentration (Cc) is analogous 

Component concentration (Cc) in chemical systems which has a non-linear impact on 

chemical reactions if the order of the substance >1.   

Rate = k*(substance 1) a × (substance 2) b × (substance 2) c…        [4.1] 
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It is assumed that the order of the components in the engineered system is >1 and that the 

impact of (Cc) in engineered systems is also a nonlinear function.  The impact (y) of (Cc) 

on Reception (Rr) is represented by an exponential function where (m) is the impact 

multiple and (Rr) is increased by a factor of e (m) when (Cc) =1 and a factor of 1 when 

(Cc) =0.   

y = e (m)*(Cc)                 [6.1] 

• Degrees of Freedom (Df). Degrees of Freedom (Df) is analogous to Molecular Freedom 

(F) in chemical systems. (F) Increases chemical reactions as a linear function by 

increasing the frequency factor (A) in the rate constant equation.  

Rate constant, k = A×e (-Ua)/RT                            [4.2] 

It is assumed that the impact of (Df) is also a linear function. The impact (y) of (Df) on 

Reception (Rr) is defined by a function where (Rr) is increased by a multiple of (m) +1 

when (Df) =1 and a factor of 1 when (Df) = 0. 

y = (m) × (Df) +1                    [6.2] 

• Interoperability (Int).  Interoperability (Int) is analogous Temperature (T) in chemical 

systems which has a non-linear impact on chemical reactions according to the rate 

constant equation.   

Rate constant, k = A×e (-Ua)/RT                         [4.2] 

Rate = k × (substance 1) a × (substance 2) b × (substance 2) c        [4.1] 

It is assumed that the impact of (Int) in engineered systems is also a nonlinear function.  

The impact (y) of (Int) on Reception (Rr) is represented by an exponential function where 

(m) is the impact multiple and (Rr) is increased by a factor e (m) when (Int) =1, and a 

factor of 1 when (Int) = 0.   
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y = e m*(Int)                   [6.3] 

• Variety of Regulators (Vr).  Variety of regulators (Vr) is analogous to catalytic volume 

(Vc) in chemical systems.  (Vc) increases reactions in a nonlinear function by reducing 

activation threshold (Ua) in the rate constant equation.  

Rate constant, k = A×e (-Ua)/RT                          [4.2] 

It is assumed that the impact of (Vr) is also a nonlinear function. Activation information 

threshold (Ia) starts at 100% of its initial value when (Vr) =1 and declines to a lower level 

as (Vr) decreases from 1 and approaches 0.    The impact (y) of (Vr) on information 

threshold (Ia) is represented by an exponential function with an intercept at some 

percentage (z) reduction in (Ia) when Vr =0.   

y = (1-z %) × (Vr)2 +z%                [6.4] 

 

6.1.4 Verification and Validation 

Prior to conducting experiments, the model was tested to confirm that the model that was 

built is the model that was designed (i.e., verification) and that it meets its intended purpose (i.e., 

validation).  The V&V (verification & validation) is most of all a process of comparing things 

(Sokolowski & Banks, 2010): the model vs its specifications, and the model vs its purpose.   The 

CLD and simulation models are developed using Vensim modeling & simulation software 

(Ventana Systems, 2016).  Vensim has several functions that support the verification and 

validation process.   The V&V test plan and results are documented in Table 17. 
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Type Requirement Test Results 

Verification Model consistency: variable 

relationships and formulas are 

consistent with the logic of 

stock & flow model structures 

Run Vensim Check Model function. 

(Appendix D  Figure 23) 

Pass 

Unit consistency: units are 

consistent in formulas and 

variable relationships. 

1) Run Vensim Units Check function. 

(Appendix D Figure 24)  

Pass 

Causal Relationships: The 

relationships defined in the 

CLD are reflected in the 

simulation model 

2) Visually inspect the Vensim Causal 

Trees and Use Trees for each variable. 

(Appendix D Figure 25- Figure 30) 

Pass 

Validation The model represents 

engineered systems 

Identify aspects of the model that are 

associated with being an engineered system 

Pass 

Behavior in the engineered 

system  is comparable to the 

behavior in the chemical 

system 

Compare graphs of total energy in chemical 

systems to total information in the 

engineered system model. 

(Figure 7 and Figure 15)  

Pass 

Table 17. Verification and Validation Test Plan 

 

Verification: The goal of verification testing is to confirm that the design for the 

conceptual model has been correctly implemented and that structure of the model follows 

governing rules.  The simulation model is a system dynamic model and is governed by the rules 

for stock & flow structures.  The design for the model is defined by the conceptual model in 

Figure 12, and the variable relationships defined in Table 13.   The Vensim functions used for 
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verification testing are: “Check Model” compares the model to principles for system dynamic 

modeling structures; “Units Check” performs a dimensional analysis on formulas in the model to 

identify unit inconsistencies; and Causal Trees / Use Trees provide a mapping of variable 

relationships. Both Model Check and Units Check passed.   Visual inspection of the Causal 

Trees / Use Trees confirmed that the variables relationships in the conceptual model and variable 

definitions are accurately represented in the simulation model. Screen shots of the Vensim 

verification test results can be views in Appendix D, Figure 23 - Figure 30.  Based on the results 

from the Vensim checks and an inspection of the Vensim graphs, it is concluded that the 

simulation model is correctly built and meets its intended purpose.  With the V&V complete, 

experiments are conducted to answer the modeling questions and study the propositions for the 

initial theory of emergence in engineered systems.    

Validation: The goal for validation testing is to confirm that the model realizes its 

purpose by representing the behavior it was intended to model.  The purpose of the simulation is 

to study emergence in engineered systems.  The engineered system aspect of the model is 

represented by the decisions associated with the values for the independent variables.   The 

independent variables in the model are: Activation Ratio of Information (ARI); Reception to X-

mission Multiple (RXM); Degrees of Freedom for system components (Df); Concentration of 

system components (Cc); Degree of interoperability (Int); Variety of the system components 

(Vr).   As system design decisions are made, the values of each variable are determined.  The 

consequence of those decisions affects the occurrence of emergence in the engineered system.    

The emergence aspect of the model are the analogies that enable emergence in to be 

studied based on the behavior of endothermic chemical reactions.  The behavior of endothermic 
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chemical reactions is depicted in Figure 7, and compared to the general behavior of engineered 

system with and without emergence (see Figure 15). 

 

 

 

Figure 7. Endothermic Chemical Reaction 

 

  

 

Figure 15. Emergence in Engineered Systems  
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The Activation Information Threshold (Ia) = 2000 I-Units for the example presented in 

Figure 15.  If the internal information of the engineered system must reach or exceed 2000 I-

Units, the information ratios of emergence (IRE) will be >=1 and emergent effects will occur.   

The dotted lines in Figure 15 are the trends for the information ratio of emergence (IRE).  

The max IRE is less than one (value =.77<1) in the trend for the IRE blue dotted line.  This 

indicates that the change in the internal information was not sufficient to cause emergence.  The 

solid blue line shows the progression of internal information as the engineered system receives 

information, increases to 1772 and returns to its original level of 1000. The change in internal 

information at the end of the interaction is zero.  This behavior is similar to the chemical system 

behavior when a chemical reaction does not occur (i.e., blue line (*) in Figure 7).    The internal 

energy (U) in the chemical system increases then returns to its original level.  The change in 

internal energy at the end of the chemical interaction is zero.    

 The max IRE in the dotted red line is greater than one (value =1.05 >1). This indicates 

that the change in the internal information was sufficient to cause emergence. The solid red line 

shows the progression of internal information as the engineered system receives information, 

increases to over 2046 and eventually settles at 1250. The change in internal information at the 

end of the interaction is 250.  This behavior is similar to the chemical system behavior when a 

chemical reaction occurs (i.e., solid red line (**) in Figure 7).    The internal energy (U) in the 

chemical system increases then settles at a level greater than its initial value.  The change in 

internal energy at the end of the chemical reaction is greater than zero. 
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6.2 Experimentation   

Conducting simulation experiments supports theory development by providing an 

environment for “theoretical elaboration and exploration” (Davis et al., 2007). Davis goes on to 

say “... effective experimentation builds new theory by revealing fresh theoretical relationships 

and novel theoretical logic.”  The foundation of experimentation on which Davis makes his 

claims is being forward looking attempt at answering “what if” scenario questions.  “What if 

“scenarios looks at the status quo and considers what might happen if things were different.    

Analyzing experimental results can potentially: a) extend what is already known or initially 

theorized about a system; and b) uncover system behaviors that were previously unknown.    

 The simulation model represent emergence in engineered systems based on values for the 

six IRE variables.   But “what if” the actual values are not known?  This uncertainty can be 

modeled in Monte Carlo simulation experiments.   Real systems generally have a degree of 

uncertainty and randomness.  Even in deterministic systems where the outputs can be predicted 

with certainty, the exact value of the inputs at a future point in time may not be known.  Monte 

Carlo simulation (or sensitivity analysis) experiments mimic this aspect of real systems by 

randomly varying independent variables within their distributions and observing the average 

impact on dependent variable behavior. For these reasons, Monte Carlo experiments are 

particularly well suited to answer the modeling questions:  

a) Are there emergent effects (IRE >=1) over the range of values for the IRE 

variables? 

b) Are the variables in the IRE tuple significant explanatory factors of emergence 

(IRE >=1) in the engineered system model? 
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c) How are the variables related to each other and to the occurrence of emergent 

effects (IRE>=1) in the engineered system model? 

Mote Carlo simulations for emergence in engineered systems are further defined in 

Appendix E.  The results are presented as follows:   

 

Monte Carlo Experiment 

The distribution for the dependent variable Information Ratio of Emergence (IRE), is 

defined by a response functions (f) whose arguments are the independent variables in the IRE 

tuple: 

IRE =f (ARI, RXM, Df, Cc, Int, Vr) 

The impact of each IRE variable is explored by setting it to a fixed values (high, nominal, low 

according to ) and allowing the other variables to randomly vary over their distributions.  The 

results are compared to the simulation when all variable randomly vary.   The results are 

presented in Figure 16 and Table 18. 
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Figure 16. Monte Carlo Simulation Results 

 

 

 

 

ARI= 1.5 (High) 
IRE>=1 is 23.5% 
  

RXM= 5 (High) 
IRE>=1 is 15.65% 
 
 
  
 

CC= 1 (High) 
IRE>=1 is 4.35%  

Vr= 0 (Low) 
 IRE>=1 is .87% 
 

Int= 1 (High) 
IRE>=1 is 4.35% 
  

Df= 1 (High) 
IRE>=1 is 4.35% 
  



www.manaraa.com

119 

 

 

IRE Factor Value IRE >=1 

(% of Runs) 

ARI  

(Activation Ratio of Information) 

High = 1.5 23.5 

Nominal =1 0.00 

Low =.5 0.00 

RXM  

(Reception to X-mission Multiple) 

High = 5 15.65 

Nominal =3 0.00 

Low =1 0.00 

Cc 

(Concentration of components) 

High = 1 4.35 

Nominal =.5 2.61 

Low =0 1.74 

Df 

(Degrees of Freedom for components) 

High = 1 4.35 

Nominal =.5 2.61 

Low =0 1.74 

Int 

(Degree of interoperability) 

High = 1 4.35 

Nominal =.5 2.61 

Low =0 1.74 

Vr 

(Variety of regulators) 

 

High = 1 0.00 

Nominal =.5 .87 

Low =0 .87 

Random Variation for All Factors .87 

  Table 18. Monte Carlo Simulation Results 
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Observing the Monte Carlo Simulation results in Figure 16 and Table 18, it is 

determined that ARI has the greatest impact; increasing the % of  emergence runs from 

.87% to 23.5%.  The rank order for all factors in terms of impact on IRE is: ARI, RXM, 

Cc/Df/Int, and Vr.  Based on these results the modeling questions can be answered: 

a) Are there emergent effects (IRE >=1) over the range of values for the IRE 

variables? 

Answer:   Yes, there are emergent effects (IRE >=1) over the range of values for 

the IRE factors values.  The % of runs where ITE >=1 ranges from .87% to 

23.5%. 

b) Are the variables in the IRE tuple significant explanatory factors of emergence 

(IRE >=1) in the engineered system model?  

Answer: Yes, the variables in the IRE tuple significant explanatory factors of 

emergence (IRE >=1) in the engineered system model.  While no statistical causal 

significance is determined, it is observed that changes in the IRE variables results 

in changes in the % of emergence (IRE >=1) in the simulation runs. 

c) How are the variables related to each other and to the occurrence of emergent 

effects (IRE>=1) in the engineered system model?   

Answer: The Monte Carlo simulations show that ARI and RXM are necessary 

conditions for emergence.  Emergence only occurs when one of these variable in 

high.  No emergence occurs when either variable in nominal of low.   It is also 

observed that Vr is sufficient to prevent emergence from occurring (IRE<1).   

When Vr is zero, emergence does not occur. 
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6.3 Testing the Theoretical Propositions 

The propositions for the theory of emergence in engineered systems are listed in in Table 

19.  Each proposition is a claim about the information ratio of emergence (IRE) and conditions 

for when emergent effects will occur.   The propositions are tested in the simulation model to 

determine if it is true.   The 2nd order model is used to test the propositions.   It is assumed that a 

proposition test that passes with the 2nd order model would also pass using the 3rd order model 

given the higher explanatory power and precision of the 3rd order model.     

 

 

 Propositions for Emergence in Engineered Systems 

1) As the Information Ratio of Emergents (IRE) approaches 1, the probability of emergence 

increases. 

2) Activation Ratio for Information (ARI) = External Information (Ie) ÷Activation Information 

Threshold (Ia) >=1 is a necessary condition for IRE>=1 (i.e., emergence to occur). 

3) As the Information Ratio of Emergents (IRE) approaches 1, emergent effects occur faster.     

Table 19. Theoretical Propositions for Emergence in Engineered Systems 

 

 

Proposition #1.  As the Information Ratio of Emergents (IRE) approaches 1, the probability of 

emergence increases.  

Test: Probability of emergence is the percentage of time periods where IRE>=1.   If the trend in 

average IRE has a positive correlation with the percentage of total time periods where IRE>=1, 

then the proposition is true. 
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Results: Proposition #1 is true. Correlation Coefficient (rxy) = .954585 for Average IRE vs 

Probability of Emergents (see Figure 17).   

  

 

 

Figure 17. Average IRE vs Probability of Emergence 

 

 

Proposition #2.  Activation Ratio for Information (ARI) = External Information (Ie) ÷Activation 

Information Threshold (Ia) >=1 is a necessary condition for IRE>=1 (i.e., emergence to occur). 

Test: The proposition is true if there are no instances where IRE >=1 when ARI <1 and the other 

five IRE factors vary. 

Results: Proposition #2 is true. 100% of the IRE instances are less than 1 when ARI is less than 

1.   A sensitivity analysis is performed with five IRE factors (Cc, Df, Int, RXM, and Vr) 

randomly varying between their min and max values while allowing ARI to vary from it 

minimum to a maximum value less than 1 (.5<=ARI<1).  (See Figure 18).   
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Figure 18. IRE Sensitivity Analysis  

 

 

Proposition #3.  As the Information Ratio of Emergents (IRE) approaches 1, emergent effects 

occur faster.     

Test: The lower the time period for the first occurrence of IRE>=1, the faster the emergent effect 

bas occurred. If the trend in average IRE has a negative correlation with the first time period 

where IRE >=1 (i.e., where emergent effects occur), then the proposition is true. 

Results: Proposition #3 is true.  Correlation Coefficient (rxy) = -.9196 for Average IRE vs 1st 

Time Period for IRE>1 (see Figure 19).    
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Figure 19. Average IRE vs Time for Emergents to Occur 

 

 

6.4 Interpretation of Results 

The initial theory of emergence in engineered systems proposes six factors that affect the 

occurrence of emergents.   A simulation model was constructed to study and elaborate on the 

initial theory.   The modeling questions are: 

(a) What is the behavior of IRE over the range of values for its variables? 

(b) Are the variables in the IRE tuple significant explanatory factors of emergence in the 

engineered system model? 

(c) How are the variables related to each other and to the occurrence of emergent effects 

in the engineered system model? 

The experiment results are interpreted in the context of the modeling questions.  
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CHAPTER 8 

CONCLUSIONS, RECOMMENDATIONS, AND FUTURE WORK  

  

Emergence in engineered systems is essentially a phenomenon that brings about 

unintended system effects; specifically effects that have no apparent explanation in terms of the 

system’s parts and their relationships.   It was established that the body of knowledge on 

emergence and engineered systems would be advanced by the addition of a general theory that 

unambiguously defines emergence and explains causal factors that affect the occurrence of 

emergent effects in engineered systems.   A research question was derived to address the need 

for such a theory: 

What are the factors in engineered systems that affect the occurrence of emergence, and 

how are the factors related? 

Well established concepts and principles from thermochemistry were used to derive a theory, 

construct a system dynamics simulation model, conduct experiments, and ultimately answer the 

research questions.  

  

7.1  Answering the Research Question 

The outcome of the research is a proposal for a general theory of emergence in engineered 

systems.  The theory includes: an unambiguous definition; a set of analogies; theoretical 

propositions; qualitative and quantitative models.    

Unambiguous and Unifying Definitions.   Definitions are derived from the ontology of 

emergence summarized in section 3.1, and detailed in  of Appendix A: 
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a) Emergents are system effects that are approximately underivable based on system 

components and their interrelationships.   

b) Emergence is the action of producing system effects that are approximately 

underivable based on system components and their interrelationships.  

The ontology includes concepts applicable to physical and metaphysical domains.  The 

operational definitions used in the research are specific to the physical domain.   

A Set of Analogies.    Structural mapping was used to establish the scientific analogies in 

Table 12 between factors for endothermic reactions and factors in engineered systems.   The 

analogies provide explanation and credibility for the concepts in the proposed theory by using 

established theories and concepts from thermochemistry.   

Theoretical Propositions.   The theoretical propositions in Table 14 are claims about the 

occurrence of emergent effects and the presence of a tipping point in engineered systems.  If 

sufficient information is received, a tipping point will be reached and emergent effects will 

occur. The tipping point variable is Information Ratio of Emergence (IRE) and is determined by 

a tuple of six factors that affect the occurrence of emergence in engineered systems: 

IRE [ARI, RXM, Df, Cc, Int, Vr]                              [5.6] 

  Where: 

ARI = Activation Ratio of Information  

RXM = Reception to X-mission Multiple 

Df = Degrees of Freedom for system components  

Cc = Concentration of system components 

Int = Degree of interoperability    

Vr = Variety of the system components that act as regulators 
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Qualitative and Quantitative Models.   Three models were produced that help explain the 

emergence phenomena in engineered systems.   Each model uses a different method to explain 

the factors that cause emergent effects:  the conceptual model in Figure 12 uses Causal Loop 

Diagrams to depict balancing and reinforcing behaviors in engineered systems; and the System 

Dynamics model in Figure 14 uses simulation methods to show behaviors and interactions over 

time. 

Collectively the four components of the proposed theory answer the research question by 

providing a conceptual and quantifiable explanation of the factors in engineered systems that 

affect the occurrence of emergents, and how those factors are related. 

 

7.2 Research Contributions 

In addition to answering the research question, several other important contributions are 

made:  an ontology of emergence concepts; an unambiguous and unifying definition of 

emergence; and a systems dynamic model of emergence in engineered systems.  

  Ontology for Emergence Concepts. The ontology of emergence is database of concepts 

mapped to a common set of categories (i.e, classes).   The concepts are deconstructed into 

essential attributes, categorized, and logically linked.  Queries of the database can be performed 

and graphs of the relationships between concepts can be constructed.    

Unifying Definition of Emergence. Based on the ontology that is developed from the 

research, a general and unifying concept of emergence is defined. Emergence is defined by two 

primary classes: characteristics of the emergent effects, and characteristics of systems where 

emergent effects take place. The primary classes are broken down into eight subclasses: type; 

logical relationship; perspective; indicators; temporality; structure; knowledge constraint; and 
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application domain.  Conflicts among emergence concepts are reconciled by grouping them into 

the eight subclasses. 

System Dynamics Model of Emergence.  The literature has many examples of emergence 

modeled from a bottom up perspective with emphasis on the nature of the interaction between 

entities or agents in the system (Crutchfield, 1994; Gilbert & Terna, 2000; Holland, O.T., 2012; 

Kovacic, 2013; Padilla, 2010). While there is a risk of over simplification in not considering 

variations at the entity level; system dynamics methods enable insights to be gained about the 

role of the system’s features in generating emergent effects. The model provides an environment 

to further study the emergence problem and factors in engineered systems that affect it 

occurrence.  

The three additional contributions in conjunction with answering the research question, 

support the significance of the research in advancing the body of knowledge on emergence in 

engineered systems.   

 

 

 

7.3 Potential Implications 

The implications of the research are potential advances in the ability of engineers and 

managers to defend against or exploit the occurrence of emergence in engineered systems.  The 

potential implications are theoretical concepts and require additional research to develop them 

into operational concepts. The design and management implication can be grouped into four 

categories: risk assessment; analysis of alternatives (AoA); “designability” assessment; and 

system control.   
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Analysis of Alternatives (AoA).  AoA is a required process in the acquisition of 

engineered systems for the department of Defense (DOD, 2015).  AoA is an assessment of the 

various materiel solution alternatives that are being considered to satisfy the need for an 

engineered system.  Recall the discussion on engineered systems in Section 3.2.1, where the 

concept of an “undesignable state space” was introduced.    

 

 

 

Figure 5. State Space Segmentation  

 Undesignable: Some system requirements and constraints are apparently beyond human 

capabilities to devise a means by which they can be satisfied.  The systems states for 

these requirements and constraints are undesignable. States that occur in this space are 

failures of Simon’s (1969) first and second propositions. System states in this space are 

underivable from and unexplainable by the system components.   

Applying the previously described approach for risk assessment, engineers and 

stakeholders can include the risk of emergent effects as a design consideration.  Sensitivity 
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analysis for each alternative can be performed by varying the assumptions used to determine the 

values for the IRE factors.  As the value for IRE approaches 1, the potential design solution 

approaches the undesignable state space (where emergent effects will occur). Design solution 

alternatives can be considered on the basis of likely hood for emergent effects to occur and their 

sensitivity to the IRE assumptions. 

Designability.  Systems are designed to solve problems and satisfy capability needs.   

Based on the purpose of the system (life support vs video game for example), it may be more 

critical that the designed solution only produce effects according to its design; that is does not 

produce emergent effects.   In the same sense that IRE could be used to assess alternative 

designs, it could be used to assess a system requirements.  Criticality is a relative measure of 

impact on the mission of a system (Standard, 1980).  When the system requirements have high 

criticality placed on performance according to its design specifications, then IRE must be low 

(i.e., a low likelihood of emergents).   When the system requirements have low criticality placed 

on performance according to its design specifications, then IRE can be high (i.e., greater 

likelihood of emergents is tolerated). It is assumed that as criticality increases it becomes more 

difficult to identify solutions and the available design space gets smaller as.  The relationship 

between the max IRE given a level of criticality, and available design space can be represented 

by IRE as a function of criticality and design space as the area under the curve generated by the 

function.  To illustrate the concept it is assumed that max IRE is a reciprocal function of 

criticality, IRE = 1/ (system criticality), and that available design space = all designs such that 

max IRE<= 1/ (system criticality).  Criticality is measured on a scale from 1 to 10 (1<=low<4; 

4<= med <7; 7<= high <=10).   This concept is depicted in Figure 20. 
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Figure 20. Designability: Available Design Space, IRE, and System Criticality 

 

Plot#1 in Figure 20 illustrates a design space curve.  The curve is a function of Max IRE vs 

System Criticality.  The area under the curve is the available design space based on the require 

system criticality for the design and the maximum acceptable IRE.  Plot #2 is a surface area 

depiction of available design space as a function of max IRE and system criticality.   The shaded 

areas in Plot #3 represent the domains of max IRE and system criticality for five levels of 

available design space.  In all three plots, the available design space peaks at regions where IRE 



www.manaraa.com

132 

 

 

and system criticality approach one, and declines to a minimum level in regions where system 

criticality maximizes and IRE approaches zero. 

System Control.   The results of the design of experiment showed that the IRE factors go 

beyond correlation and actually have a causal relationship with the occurrence of emergents as 

defined by IRE >=1.  The challenge with using the IRE factors to control whether or not 

emergents will occur is in knowing how to control each of the IRE factors.  Assuming this 

knowledge exist, making adjustments to the design to increase or decrease the factors opens the 

door for controlling (or at least influencing) the occurrence of emergent effect.  Note that the 

factors are not determinants of the nature of the actual emergent effect.  The IRE factors only 

impact how fast and whether or not emergents effects will occur.   

 

7.4 Recommendations and Future Work 

A general theory of emergence in engineered systems has been proposed and the intended 

research question has been answered.  However, the research has its limitations and opportunities 

for improvement: 1) a set of factors has been proposed that affect the occurrence of emergence , 

but the research does not address how to measure the factors, how they are determined or how to 

control them; 3)  the actual functions for some of the factors (component concentration, degrees 

of freedom, interoperability, and variety of regulators) are not known and were assumed in the 

simulation model;  4) interactions between the factors were identified and prioritized but the 

exact nature of how the factors interact was not addressed; 5) the theory has not been applied to a 

real systems and its practical implications have not been tested; 6) the ontology database 

developed in this research maps  historical and contemporary concepts of emergence but could 

be improved by continuing to add new concepts as they are published. 
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 The six limitations and opportunities identified form the basis of a research agenda for 

future work.  This agenda has the potential to further advance the body of knowledge and 

improve the proposed theory of emergence in engineered systems. 
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APPENDICES 

 A: LITERATURE REVIEW DETAIL 

 

A.1 Theories and Definitions of Emergence /Emergents 

“The whole is greater than the sum of its parts”.  This familiar expression paraphrases 

Aristotle’s and is considered the earliest expression of the notion of emergence (Aristotle, 350 

B.C.). Aristotle’s actual statement was “…the whole is something beside the parts”, which 

suggest that the whole is not necessarily “greater” than its parts but rather it is somehow 

otherwise different.  Aristotle was discussing the nature of material things; specifically the 

relationship between things and the substances of which they are composed.   Things can either 

be a collection of unrelated parts (i.e., “heaps”) or they can be related in some way to form a 

unified whole.  As a unified whole, things are indivisible in terms of quantity or quality.  He uses 

as an example the unity of a set of words that forms a definition.  The set of words has the 

“differentia” (distinguishing characteristic) of definition which does not belong to and is 

indivisible in terms of the individual words in the set.  When things have several parts that are 

related by a “communion or connexion or composition”, the whole which they form becomes 

something indivisible and different from their parts; it becomes emergent. 

The actual term “emergent” was coined by G. H. Lewes (1875) in his discussion on the 

nature of cause and effect.  The premise of Lewes’ theory is that all effects are completely 

caused by the interactions of the constituent parts in a whole. Some effects have mathematical 

expressions and are completely traceable to the steps in the process that brought them about.    

However, emergents are the properties of the whole that are not identifiable in its parts; their 

mathematical expressions are nonlinear but unknown; the properties are not logically traceable to 
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interaction “procession” (i.e., orderly process steps over a time frame) of the parts in the whole. 

While the name emergent is attributed to Lewes, the concept is generally attributed to Mill 

(1846).  Mill’s composition of cause principle explains that the total effects (i.e., the 

consequence) produced by a group of entities (or physical facts) is the same whether acting 

separately or in combination.    The exception is when combinations are governed by laws 

(heteropathic laws) that are different from the laws that govern individuals.  The so called 

heteropathic laws are only known after the consequence of the combination has occurred.  This is 

another way of stating that the combination (i.e., the cause) has an unknown nonlinear effect.  

Lewes provides a detailed discussion on cause and effect relationships with examples from a 

variety of domains (physics, physiology, chemistry, etc.).  Rather than a distinction based on 

differences in governing laws as is the case with Mill, Lewes centers his argument on the 

proposition that there is less knowledge about the interaction process for emergents because they 

are the result of interactions between unlike components.  The components are incommensurable 

with each other (of different measurement standards) and produce emergent effects that are 

incommensurable with the components.    Lewes implies that there tends to be less knowledge 

and greater uncertainty in the relationships between things of “unlike kinds” (i.e., those that are 

incommensurable), than those of the same kind (i.e., those that are commensurable).  After the 

emergent effect has been experienced, it is possible that “someday” there will be sufficient 

knowledge of their interaction process steps to mathematically express the effect in terms of its 

constituent parts.  Lewes is indicating in his concept that emergents have the theoretical potential 

for some form of reduction or explanation as knowledge of the effect and its constituents 

improves.  From Lewes, we can say the limitation on the ability to “trace”, reduce, or explain 
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emergents in terms of their constituents is a temporary condition based on currently available 

knowledge.    

Conceptual elements identified from Mill (1846); Lewes (1875): 

Le1, Mi1. Emergents are system effects that are not presently traceable  to deducible 

from the properties and interaction process steps of its components, but may 

become as so in the future as knowledge improves. 

Le2, Mi2. Emergents are indicated by non-linear interactions and increase 

uncertainty about the effects produced by the interactions. 

Mi3. Emergents exist when laws that govern combinations of physical facts are 

different from the laws that govern them separately. 

Le3. Emergents are caused by the interaction between unlike (incommensurable) 

component properties and are incommensurable with the properties of their 

components. 

Le4. Applied concept to: Physics (inanimate objects and events, i.e., phenomena), 

Physiology (feelings, sensations, consciousness, mind/body relationships), 

Biology (living bodies); Chemistry (chemical reactions); Philosophy (certitude, 

truth). 

Mi4. Applied concept to physical phenomena: Physics (inanimate objects and events, 

i.e., phenomena), Biology (living bodies); Chemistry (chemical reactions). 

 

In their concepts of emergents, Alexander (1920), Morgan (1925, 1929) and Broad (1925) 

emphasize the structure of wholes and changes in their properties relative to time.   What 

Alexander calls “existents” are hierarchical structures of empirical things that occur over time. 
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He includes the human mind in his concept of empirical/material things.    Basically, things that 

we can observe or experience are composed of multiple levels of other things that we can 

observer or experience. If at some point in time a grouping of things at one level is formed, then 

a new level of empirical things will come into existence with its own unique qualities that are not 

expressible in terms of the qualities of previous levels.  These unique qualities at each level are 

emergents.  They are different in nature and not merely degrees of the same quality.  Morgan 

(1929) labels this progression as emergent evolution.  He does not distinguish his concept from 

the general (i.e., Darwin’s) concept of evolution.  Morgan considers evolution as simply an 

orderly advance of natural (as opposed to artificial) things from natural events.  This is an over 

simplification of the evolution concept but it serves Morgan’s purpose of explaining the time 

element of emergence.  Morgan disagrees with Alexander that minds and consciousness are 

emergents, but otherwise, he and Alexander seem to be in virtual lock-step in their concepts.   In 

each case there are new groupings or things at one level that cause new properties at another 

level.  They do not posit why new groupings might form other than pointing to the passage of 

time.   The occurrence of the new groupings may be predicable with sufficient empirical data 

about preceding events and knowledge of laws governing the spatial-temporal change of the 

events.  But as for the unique qualities or behaviors of the new grouping; they can only be 

deduced/predicted based on experimentation or after observation of the actual new grouping.  

Emergents are only the “so far unknowns”; with observation / experimentation they are 

determinable/predictable.  

Broad (1925) makes a different structural argument.   He explains the difference in 

behavior between things as a matter of the configurations of their parts (i.e., a particular way in 

which a group of parts are arranged).  Things may have multiple layers of configurations where 
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one configuration is a composition of other configurations which are themselves composed of 

individual parts or configurations of parts.   Broad posits that the behavior of all things can be 

determined by knowing the: a) individual behaviors of their parts in isolation; and b) the laws 

that govern the integration of their individual behaviors when the parts are configured together.   

If both pieces of information about the configuration can be known a priori without observation, 

then the behaviors are mechanistic (i.e., they are resultants according to Lewes’ (1875) concept).  

However, if the only way to know the individual part behaviors and governing laws for their 

integration is to observe them, then the behaviors are emergent. Broad posits that emergents 

exists in a configuration of components for one of two reason: 1) the components have latent 

properties that do not manifest in isolation and only manifest in the particular configuration; or 

2) there are unique laws that govern the integration of components into the particular 

configuration.   Discovery of the latent properties or governing laws can only be accomplished 

by observing the actual configuration in question.  He adds that while observation is possible in 

the physical world it is not necessarily so in the “trans-physical” (i.e., metaphysical) realm 

because it is not possible to observe the “brain and its mind”.  In the physical world, once the 

governing laws or latent properties are observed, theoretically the emergent property can be 

logically deduced.  “Theoretically” is used in the sense that it is possible if difficulties associated 

with mathematical computation and access to information are not considered.   Other 

configuration behaviors are completely deducible from knowledge of their components in 

isolation without ever observing the actual configuration in question (i.e., they are mechanistic). 

Broad distinguishes the behaviors of things in chemistry (chemical reactions), biology (living 

beings), physiology (mind / body concepts); physics (mechanical object, spacio-temporal 

relations) based on whether they have emergent or mechanistic properties.   
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  Conceptual elements identified from Alexander (1920), Morgan (1929), and Broad 

(1925): 

Al1, Mo1. New hierarchical configurations of a system form over time. 

Al2, Mo2. The uncertainty of the system properties increases with the addition of new 

configuration. 

Al3, Mo3. Emergents are qualities or properties of material existents (i.e., wholes) 

that are unique to each hierarchical level that form a structure over time and are 

only predicable/deducible with observation/experimentation. 

Br1. Physical emergents are latent qualities unique to component configurations and 

are only theoretically deducible after observation. 

Br2. New configurations indicates a potential for emergent properties.  

Br3. Things are composed of multiple layers of part configurations. 

Br4. Mental Emergents are qualities or properties of the mind that are not observable 

or deducible in terms of its constituents parts (the body).     

Al4, Mo4. Applied concept to material things: Chemistry, biology, physics,  

 

Where some emergent theorist are concerned with traceability to efficient causes, Ashby’s  

(1956) concept of emergents is based on Black Box theory and is only concerned with 

knowledge of behaviors. Cause is not a concern.    A “Black Box” is essentially a system (parts 

and their relationships) whose internal mechanisms are not accessible to direct observation. Only 

the state of inputs, out puts, and feedbacks at a point in time are directly observable. Black Box 

theory provides the principles/methods that are appropriate when attempting to answer questions 

about systems where observation is limited.   Knowledge of the contents and laws governing 
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Black Box behavior are acquired by deduction from historical observation or experimentation.   

If a number of Black Boxes are coupled (inputs /outputs connected) to form a system, and the 

acquired knowledge of their behaviors in isolation and their coupling relationships is complete; 

then all properties of the whole will be predicable.  However, the number of black boxes and 

coupling relationships can grow to such an extent that parts of the system are unobservable and 

some of its properties are apparently unpredictable (i.e., emergent).  Ashby’s concept of 

emergents attributes the phenomena to relative complexity of the system to its parts.   

Complexity in Ashby’s concept is the number of system states or the number of variables 

required to define system states.   Emergents exist when: 1) the complexity of the system relative 

to the complexity of its parts is great, and 2) the false expectations that wholes will reproduce the 

properties of their parts and vice versa.  As more Black Boxes are coupled together the 

complexity of the system increases:  the number of variables and possible states of the “Black 

Box” system becomes greater than the number of variables and possible states of each individual 

Black Box.    Bar-Yam (2004) describes the difference in size of the systems vs its parts as a 

difference in scale (i.e., detail of the system). The system properties are completely contained 

within its various scales.  However, the amount of information is so great in the fine levels of 

details at the lower scales that system level properties are not readily recognizable.   As the gap 

between scales or the size of the system vs its parts increases, extracting system properties 

remains possible but becomes virtually impossible.  These difficult but possible to derive 

properties are weak emergents and typically associated with systems that are constructed by 

humans (i.e., engineered) vs those that naturally occur. 

Another aspect of emergence discussed by Ashby is the concept that what is applicable to 

a group /whole, may or may not be applicable to its members, and vice versa.   Ashby cites the 
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example of rubber molecules.  A single rubber molecule does not possess the property of 

elasticity.  As the number of rubber molecules in a group increases, they interact with each other 

and produces the property of elasticity. The property of elasticity in a system of rubber molecules 

is not deducible from the properties of the rubber molecules in isolation.   Bar-Yam (2004) 

defines this as a type of emergence as strong and the result of the interdependencies/ couplings of 

the parts into an ensemble or collective.  These are emergents in the same sense that Broad 

(1925) discusses unique properties as a function of the uniqueness of component configurations. 

The states of interdependent / coupled parts are dependent on the inputs, outputs, and feedback 

from other parts. When components are studied in isolation the states (and their properties) that 

are dependent on other parts are not observed.  When the components are assembled the 

dependent states are produced and emergent effects are observed. Bar-Yam refers to the 

difference between interdependencies at various scales in the system as multiscale variety (or 

complexity). The other properties lost when observing parts in isolation (i.e., at lower scales) are 

the effects of constraints on the systems and its components.  A constraint puts limits on the 

system or certain configurations or “collectives” of parts within the system. When observation 

scales are in context with the entire systems, behaviors are observed that are not observable when 

the scale is at the subsystem level.  This is the essence of what Bar-Yam refers to as multi-scale 

complexity.  Strong emergents that appear not to be logically deducible, are actually deducible 

from observations of the system from a large scale perspective as a whole rather than 

observations at lower level scales (subsystem). The stronger variety of emergence is typically 

found in systems (natural or constructed) that have feedback structures and goal seeking 

behavior. These systems may evolve over time but not necessarily in the case of constructed 

systems. 
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Conceptual elements identified from Ashby (1956) and Bar-Yam (2004): 

As1, Emergents are actually predictable behaviors of the system but are apparently 

unpredictable due to limited visibility of system parts and their coupling 

relationships. 

As2. Visibility of the parts and relationships in a system diminishes as the complexity of 

the system becomes greater than the complexity of its parts. 

As3. Complexity of a system increases as a function of the number of system variables 

and the number of possible states that can be produced from the same set of 

variables.   

Ba1. Weaker emergents are properties/behaviors of groups of components (i.e., 

subsystems) that are difficult to deduce because the density of information at lower 

scales obscures the view of properties at higher scales 

Ba2. Stronger emergents are properties of the system or subsystems (i.e., scales within a 

system) that are not applicable to its members and vice versa and are only derivable 

by observing the system at large rather than scales at the subsystem or component 

level. 

Ba3. Stronger emergents are produced when constraints exist (or evolve) that are 

applicable to the system or a scale but not to individual parts; and when there are 

properties associated with the interdependence of parts in a system (i.e, complexity). 

As4, Ba4. Applied concept to naturally occurring and human constructed things: 

Chemistry, biology, physics, phycology 
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Throughout the literature on emergents the term novelty (i.e., new) is often encountered. In 

the sense that novelty is new property it is an observation or experience by an observer; it is 

extrinsic.  Crutchfield (1994) considers phenomena found in nature (flocking birds; ant societies, 

optimal pricing in economies, etc.) and concludes that there is another type of novelty; one that is 

based on new functionality within the system rather than spatial-temporal or logical novelty as 

encountered by an outside observer.  In this case intrinsic emergents, new patterns appear 

overtime from the non-linear interactions of subsystems and lower level components but are not 

directly defined by the constraints and forces in the system.  This definition is similar to others 

where “new” or novelty is associated with properties of the system that are not readily 

explainable in terms of it components.   The critical difference being properties referenced in 

other emergent definitions are observer dependent, while Crutchfield’s offers a definition that is 

intrinsic to the system and observer independent.   The qualification that the “new patterns” are 

intrinsic emergents, is that the consequence of their existence the system (and the user within the 

system) gains new capabilities and is able to perform new functions. The phase transition where 

new patterns become intrinsically important is dues to an increase in the system’s information 

processing which is indicated by an increase in Shannon entropy.  He proposes that behavioral 

models (i.e., computer simulations) representing the system, its constituents and its environment 

can be used to explain intrinsic emergents and represent the emergence transition phase.  Models 

eliminate the subjectivity and computational limitations of observers by identifying new patterns 

that form over time, and allow agents in the system to perform new functions and capabilities.        

Another functional concept of emergents is that certain properties have the ability/”causal 

power” to bring about other properties within or between levels in the system.  System properties 

are emergent if they have causal powers that are not explainable in terms of or predicable from 
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system constituents (Kim, 1999).  Emergent properties manifest causal powers by bringing about 

other properties at the same level; at a higher level (upward); or at a lower level (downward 

causation).  Upward and same level causation have general acceptance.  However, one of the 

controversies in emergence literature is the concept of downward causation because it seems to 

suggest that something can cause changes in the very constituents from which it is composed.  

Kim is referring to downward causation as defined by Campbell (1974) where the causal powers 

exist at different times for different levels (diachronic) rather existing simultaneously at the same 

time (synchronic).     The time delay allows the causal roles to switch between levels and within 

levels.   Initially one effect produces properties that causes a subsequent effect with properties at 

the same or a different level.   Time elapses and eventually what were the subsequent effects and 

properties cause changes in the properties of their constituents.   The cycle repeats with the 

causal roles switching over time.   In Kim’s functional concept of emergents, only consciousness 

and mental phenomena (i.e., the metaphysical domain) meet the criteria for emergents in the 

strictest sense of being unexplainable and unpredictable.   Otherwise, it is theoretically possible 

for the causal powers of the non-metaphysical to be predicted and explained with knowledge of 

the physical roles of their constituent parts and the laws that govern their relationships. 

    Conceptual elements identified from Crutchfield (1994), and Kim (1999):  

Cr1, Ki1. Novelty of emergents is intrinsic and observer independent because they 

provide new internal capabilities. 

Cr2, Ki2 Emergents develop over time at various levels in the system. 

Cr3. Emergents patterns/structures are explainable in terms of the non-linear 

interactions of their system constituents by using behavioral models. 
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Cr4. An increase in information processing (Shannon entropy) is an indication of 

emergence. 

Ki3. Emergents properties are not even theoretically explainable or predicable by any 

means based on system constitutes. 

Cr5. Applies the concept to naturally occurring and human constructed things. 

Ki4. Limits emergents to consciousness and mental phenomena of mind /body 

relationships (metaphysical concepts). 

 

Bedau’s (1997) introduces a concept where emergents exist in varying degrees based on 

derivability.   In all degrees of emergents share the characteristic of not being properties at higher 

levels of structures that do not exit at lower levels.  The variation occurs in terms of being 

logically derivable/ logically predictable base on lower level constituents.   In the nominal case, 

the derivability/logical predictability exist due to limited knowledge of the observer.  Weak 

emergents are derivable (i.e., logically predictable) but doing so is very difficult.  Strong 

emergence entails properties that are reductively unexplainable by their micro processes even 

with perfect information about governing laws and component interactions.  Nominal emergents 

are trivial in Bedau’s concept given that they can be resolved with variable information.  Strong 

emergence has the suggestion of an outside force/power beyond the components in the systems. 

Bedau is among those that are skeptical that strong emergence exist, and consider it scientifically 

irrelevant beyond questions related to consciousness and mind/body relationships.  With these 

extremes in mind, the most relevant case of emergence is “weak”.  The difficulty that defines 

weak emergents in Bedau’s (1997) concept has to do with aggregating “non-linear and context-

dependent” interactions of lower level constituents into the higher level properties. The non-
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linear reference suggest that small changes result in large effects and context-dependence 

indicates that the effects vary over space and time.  To capture this dynamic, Bedau defines weak 

emergents as underivable without simulation where simulation represents the iterative 

aggregation that must take place to yield the emergent property. The explanation / prediction 

difficulty as described by Bedau is intrinsic to the system and is not due to any limitation on 

human capability or computational power.   

Maier (2015) presents a concept of emergence that is similar to Bedau (1997).  Both authors 

fundamentally define emergents as properties of the system that are not possessed by its 

components; and both includes degrees of emergence based on derivability.  Bedau attributes 

emergents to the aggregation of microstate into higher level macro sates, and Maier to 

information and material exchanges between systems of systems (independent systems and 

system components).  Where Bedau distinguishes degrees of emergence based on derivability 

and available information; Maier (2015) distinctions are based on derivability and the complexity 

of models that represent the system: 1) emergents are simple when they can be readily derived 

without observation from low complexity mathematical models that represent system behaviors 

but not the interactions of the system components; 2) emergents are weak when the properties 

can be readily derived after observation but only by high complexity simulation models that 

represent the interactions of the system components: 3) emergents are strong when they are 

inconsistently derivable high complexity simulation models even after observation; and 4) 

emergent are spooky when they are completely underivable even after observation and with the 

most complex simulation model that fully represents all details of the system.   

By describing emergent in terms of their derivability, Bedau (1997) and Maier (2015) are in 

essence capturing a reductionist type perspective of emergence. A very simplified reductionist 
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perspective would be that all systems are completely generated by their components and rules 

governing their interactions.   Some system properties are apparently irreducible (i.e., novel 

relative to the properties of the components), but actually all system properties are explainable 

and derivable from system components and sufficient knowledge of the rules governing their 

interactions (Broad, 1925; Bertalanffy, 1956).  Bedau’s Strong emergents and Maier’s Spooky 

emergents are inconsistent with this type of reductionist perspective.  While it may be 

philosophically interesting, there are no examples or evidence where strong/spooky emergence in 

a physical context has or will exist outside the realm of human consciousness and mental 

phenomena. 

Conceptual elements identified from Bedau (1997) and Maier (2015):  

Be1, Ma1. Though emergents are properties of systems that cannot be possessed by their 

constituents, they can be reductively explained through an iterative aggregation 

process but it is inherently difficult to do so (i.e., they are intrinsic). 

Be2, Ma2. Emergents vary in their degree of difficulty to explain, reduce / reproduce. Its 

strongest form is limited to consciousness and mental phenomena of mind /body 

relationships and are not explainable/ predictable even in theory. 

Be3. Interactions that produce emergents are nonlinear and vary over space and time. 

Ma3. Emergents are produced by information as well as material exchanges between 

independent systems and system components. 
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Be4, Ma4. Only reductively explainable emergents are scientifically relevant and 

applicable to natural and human constructed things, except in its strongest form 

which is limited to consciousness and mental phenomena of mind /body 

relationships.  

 

 J.H. Holland (1998) studies games and human neurons to identify mechanisms and 

conditions that foster emergents.  His concept of emergents is intrinsic and “weak” in the same 

sense described by Bedau (1997): properties of higher levels are not present at lower levels and 

predicting them is inherently difficult but possible.  He disagrees that emergents are necessarily a 

“novel” phenomenon in the sense of be something new.  He posits that emergents are 

recognizable, persistent, and reoccurring patterns (or behaviors) in systems whose logical 

explanation or reduction in terms system components is difficult.  J.H. Holland (1998) makes the 

point that such an explanation or reduction is only possible when component interactions are 

taken into account.  However, even with the availability of perfect laws that govern the system’s 

interactions, prediction and explanation of patterns are so inherently difficult that when they 

occur, these patterns (or behaviors) are apparently novel and therefore emergent. The difficulty 

referenced in Holland’s concept is due to the size of system’s state space (i.e., all possible 

arrangements and values of system components) that produce the patterns.   The state space for 

certain systems can increase to such a size that there is perpetual discovery of what appears to be 

novel outcomes, i.e., emergents.  Certain system characteristics contribute to or cause the state 

space to increase:  

• Multiple component types and instances. The more components there are the greater 

the number of possible combinations. 
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• Coupled components.  The inputs and outputs of components are connected via to 

each other making each one dependent on the other (i.e., interdependent).   

• Component interactions are non-linear. The input and output component functions 

are exponential. 

• Governing Rules.  Rules determine the ways and conditions for interactions of each 

type of component can interact and provide constraints for the possible system 

states. 

• Variable Strategies to accomplish goals.  States vary in priority according to their 

ability to accomplish goals within the rules and change based on learning from 

feedback.  

• Multiple paths to the same state.  Aggregating inputs and outputs of different 

component configurations can produce the same system level state.  Numbers of 

paths per system state is in essence complexity as defined by Ashby (1956).   

The characteristics are not intended to be essential elements or required criterion for emergence. 

J.H. Holland presents them as some of the identifying characteristics of systems that produce 

emergents. Each characteristics has a causal influence on increasing the system state space. The 

more systems possess these characteristics the more likely emergents will be encountered.   

Conceptual elements identified from J.H. Holland (1998): 

J.H. Hol1. Emergents are reoccurring system patterns/behaviors that are apparently 

unexplainable in terms of system components. 

J.H. Hol2. The number of system states is so great that it is inherently difficult (yet 

possible) to explain, reduce, or predict emergents based on their constituents and 

governing rules. 



www.manaraa.com

165 

 

 

J.H. Hol3.  The likelihood of encountering emergents increases as the number and type of 

system components increases. 

J.H. Hol4. The likelihood of encountering emergents increases with greater coupling 

between components. 

J.H. Hol5. System inputs are aggregates with exponential functions (i.e., non-linear). 

J.H. Hol6. The likelihood of encountering emergents increases as the number of 

governing rules decreases relative to the number of component types. 

J.H. Hol7. The likelihood of encountering emergents increases as learning (i.e., changes 

based on feedback relative to goals) increases.  

J.H. Hol8. The likelihood of encountering emergents increases as number of paths per 

system state increases (i.e., increase in complexity). 

J.H. Hol9.  Applied concept to naturally occurring and human constructed things: 

Chemistry, biology, physics. 

 

B.2 Reference Model and Ontology of Emergence 

Reference models are sets of unstructured statements representing what is known and 

assumed about a subject (Tolk et al., 2013). The intent is to capture a comprehensive view of the 

subject from relevant perspectives; including inconsistent or conflicting interpretations.   The 

collection of conceptual elements captured in the literature review can be considered a reference 

model of the emergence concept.  Using the reference model to build an ontology further 

explains the concept by providing a structured representation of its essential elements.    

The essential elements formally represented by the ontology are the main ideas that are 

used to explain what emergence is and how it occurs.   Each idea has its own set of defining 
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characteristics and relationships that provide the structure for the concept.  In the ontology the 

main ideas are called “classes” and their structural characteristics are “properties” (Noy & 

McGuinness, 2001).   The ontology is built through an iterative process of searching the 

reference model for its main ideas (classes) and defining characteristics (properties), then 

mapping their relationships.  In this dissertation mapping was performed in the Protégé ontology 

tool.   

The characteristics of emergents and the systems that exhibit them are captured in a 

reference model (see  below) and used to build an ontology of the concept.  The ontology of 

emergence including a mapping of theories to classes, subclasses and properties is presented in 

detail in Figure 21 of this appendix and at a summary level in Figure 5 of Chapter Three.
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Source 
Identifier 

Conceptual Element Class Sub-Class 

Le1, Mi1 Emergents are system effects that are not 
presently traceable  to deducible from 
the properties and interaction process 
steps of its components, but may become 
as so in the future as knowledge 
improves. 

Phenomena Type = Qualities/Properties 

Logical Relationships= 
Theoretically Explainable/ 
Derivable 

Perspective = Extrinsic 

Systems Structure = Coupled / 
Interconnected 

Temporality = Synchronic 

Knowledge Constraint = 
Experience/Observations 

Le2, Mi2. Emergents are indicated by non-linear 
interactions and increase uncertainty 
about the effects produced by the 
interactions. 

Phenomena Indicator = Nonlinearity; 
Uncertainty; 

Mi3 Emergents exist when laws that govern 
combinations of physical facts are 
different from the laws that govern them 
separately. 

Systems Structure = Dissimilar Laws 

Temporality = Synchronic 

Le3 Emergents are caused by the interaction 
between unlike (incommensurable) 
component properties and are 
incommensurable with the properties of 
their components. 

System Structure = Dissimilar Parts 

Temporality = Synchronic 

Le4 Applied concept to naturally occurring  
and human constructed  things: 
Chemistry, biology, physics, phycology, 
philosophy 

Systems Domain =Natural (physical) ; 
Engineered (physical); Natural 
(metaphysical) 

Mi4 Applied concept to physical phenomena: 
Physics (inanimate objects and events, 
i.e., phenomena), Biology (living 
bodies); Chemistry (chemical reactions). 

Systems Domain =Natural (physical) ; 
Engineered (physical) 

Al1, Mo1 New hierarchical configurations of a 
system form over time. 

Systems Structure = Hierarchical 

Temporality = Diachronic 

Table 20. Reference Model for Emergence  
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Table 20 (continued) 

Al2, Mo2. The uncertainty of the system properties 
increases with the addition of new 
configurations. 

Phenomena  Indicator = New configurations; 
Uncertainty 

Al3, Mo3 Emergents are qualities or properties of 
material existents (i.e., wholes) that are 
unique to each hierarchical level that 
form a structure over time and are only 
predicable/deducible with 
observation/experimentation. 

Phenomena  Type = Qualities/Properties 

Logical Relationships = 
Theoretically Explainable/ 
Predictable 

Perspective = Extrinsic 

Systems Structure = Hierarchical 

Temporality = Diachronic 

Knowledge Constraint = 
Experience/Observations 

Br1 Physical emergents are latent qualities 
unique to component configurations and 
are only theoretically deducible after 
observation.  

Phenomena  Type = Qualities/Properties 

Logical Relationships = 
Theoretically Explainable/ 
Derivable 

Perspective = Extrinsic 

Systems Structure = Hierarchical 

Temporality = Diachronic 

Knowledge Constraint = 
Experience/Observations 

Br2 New configurations indicates a potential 
for emergent properties. 

Phenomena  Indicator = New configurations; 
Uncertainty  

Br3   Things are composed of multiple layers 
of part configurations. 

Systems Structure = Hierarchical 

Temporality = Synchronic 

Br4 Mental Emergents are qualities or 
properties of the mind that are not 
observable or deducible in terms of its 
constituents parts (the body).     

Phenomena Logical Relationships = Not 
Explainable/ Predictable 

System Domain = Natural 
(metaphysical) 
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Table 20 (continued) 

Al4, Mo4 Applied concept to material things: 
Chemistry, biology, physics, 

System Domain =Natural (physical) ; 
Engineered (physical)  

As1 Emergents are actually predicable 
behaviors of the system but are 
apparently unpredictable due to limited 
visibility of system components and 
coupling/interdependent relationships. 

Phenomena Type of Effect = Behaviors 

Logical Relationships = 
Theoretically Explainable/ 
Derivable 

Perspective = Extrinsic 

Systems Structure = Coupled / 
Interconnected  

Temporality = Synchronic 

Knowledge Constraint = 
Observation Inaccessibility  

As2 Visibility of the parts and relationships 
in a system diminishes as the complexity 
of the system becomes greater than the 
complexity of its parts. 

System Structure = Dissimilar 
size/complexity of parts vs 
system 

As3 Complexity of a system increases as a 
function of the number of system 
variables and the number of possible 
states that can be produced from the 
same set of variables 

Phenomena Indicator = Complexity 

Ba1 Weaker emergents are properties or 
behaviors of groups of components (i.e., 
subsystems) that are difficult to deduce 
because the density of information (i.e., 
complexity) at lower scales obscures the 
view of properties at higher scales 

 

Phenomena Effect = System Behaviors; 
System Properties 

Logical Relationships = 
Theoretically Explainable/ 
Derivable 

Perspective = Extrinsic 

Indicator = Information 

Type =Properties or behaviors 

System Structure = Hierarchical 

Temporality = Synchronic  

Knowledge Constraint = 
Information Density  
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Table 20 (continued) 

Ba2 Stronger emergents are properties of the 
system or subsystems (i.e., scales within 
a system) that are not applicable to its 
members and vice versa and are only 
derivable by observing the system at 
large rather than at subsystem or 
components. 

Phenomena Logical Relationships = 
Theoretically Explainable/ 
Derivable 

Perspective = Extrinsic 

Ba3 Stronger emergents are produced when 
constraints exist (or evolve) that are 
applicable to the system or a scale but 
not to individual parts; and when there 
are properties associated with the 
interdependence of parts in a system (i.e, 
complexity). 

System Structure = Hierarchical 

Temporality = Synchronic ; 
Diachronic 

Knowledge Constraint = 
Visibility of Whole System; 
Visibility of Coupling 
Relationships 

Phenomena Indicator = Complexity 

As4, Ba4 Applied concept to naturally occurring  
and human constructed things: 
Chemistry, biology, physics, phycology 

System Domain =Natural (physical) ; 
Engineered (physical) 

Cr1, Ki1 Novelty of emergents is intrinsic and 
observer independent because they 
provide new internal capabilities. 

Phenomena Perspective = Intrinsic 

Cr2, Ki2 Emergents develop over time at various 
levels in the system. 

System Structure = Hierarchical 

Temporality = Diachronic 

Cr3 Emergents patterns/structures are 
explainable in terms of the non-linear 
interactions of  their system constituents 
by using behavioral models 

Phenomena Logical Relationships = 
Explainable/ Derivable 

Type of Effect = 
Patterns/Structures 

Indicator = Nonlinearity 

System Knowledge Constraint = 
Modeling Capability 

Ki3 Emergents properties are not even 
theoretically explainable or predicable 
by any means based on system 
constitutes. 

Phenomena Logical Relationships = Not 
Explainable/ Derivable 

Type of Effect = 
Properties/Qualities 

Indicator = Uncertainty 

System Knowledge Constraint = Human 
Comprehension 
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Table 20 (continued) 

Cr4 An increase in information processing 
(Shannon entropy) is an indication of 
emergence. 

Phenomena Indicator = Information; 
Shannon Entropy 

Cr5 Applies the concept to naturally 
occurring and human constructed things. 

System Domain =Natural (physical) ; 
Engineered (physical) 

Ki4 Limits emergents to consciousness and 
mental phenomena of mind /body 
relationships. 

System Domain = Natural 
(metaphysical) 

Be1, Ma1 Though emergents are properties of 
systems that cannot be possessed by 
their constituents and are apparently 
reductively unexplainable, they can be 
reductively explained through an 
iterative aggregation process but it is 
inherently difficult to do so (i.e., they are 
intrinsic). 

Phenomena Logical Relationships = 
Explainable/ Derivable 

Type of Effect = 
Qualities/Properties 

Perspective = Intrinsic 

System Knowledge Constraint = 
Inherent Difficulty (iterative 
aggregations) 

Be2, Ma2, Emergents vary in their degree of 
difficulty to explain, reduce / reproduce. 
Its strongest form is limited to 
consciousness and mental phenomena of 
mind /body relationships and are not 
explainable/ predictable even in theory. 

Phenomena Logical Relationships = Not 
Explainable/ Derivable 

System Domain = Natural 
(metaphysical) 

Be3 Interactions that produce emergents are 
nonlinear and vary over space and time. 

System Temporality = Diachronic 

Phenomena Indicator = Nonlinearity 

Ma3 Emergents are produced by information 
as well as material exchanges between 
independent systems and system 
components. 

System Structure =  
Coupled/Interconnected 

Temporality = Synchronic 

Phenomena Indicator = Information 

Be4, Ma4 Only reductively explainable emergents 
are scientifically relevant and applicable 
to natural and human constructed things. 

System Domain =Natural (physical) ; 
Engineered (physical) 
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Table 20 (continued) 

J.H. Hol1 Emergents are reoccurring system 
patterns/behaviors that are apparently 
unexplainable in terms of system 
components. 

Phenomena  Type of Effect = Behaviors 

System Temporality = Diachronic 

J.H. Hol2 The number of system states is so great 
that it is inherently difficult (yet 
possible) to explain, reduce, or predict 
emergents based on their constituents 
and governing rules. 

Phenomena Perspective = Intrinsic 

Logical Relationships = 
Explainable/ Derivable 

Indicator = Number of system 
states (complexity) 

System Knowledge Constraint = 
Inherent Difficulty (size of 
system state space) 

J.H. Hol3   The likelihood of encountering 
emergents increases as the number and 
type of system components increases. 

System Structure = Multiple Component 
Types and Instances 

Phenomena Indicator = Variety of  
components (complexity) 

J.H. Hol4 The likelihood of encountering 
emergents increases with greater 
coupling between components. 

System Structure = 
Coupled/Interconnected  

J.H. Hol5 System inputs are aggregates with 
exponential functions (i.e., non-linear). 

Phenomena Indicator = Nonlinearity 

J.H. Hol6 The likelihood of encountering 
emergents increases as the number of 
governing rules decreases relative to the 
number of component types. 

System Structure = Governing Rules << 
Component Types 

Phenomena Indicator = Number of rules vs 
number components 
(complexity) 

J.H. Hol7 The likelihood of encountering 
emergents increases as learning (i.e., 
changes based on feedback relative to 
goals) increases.  

System Structure = Learning (∆ based 
on feedback vs goals) 

J.H. Hol8 The likelihood of encountering 
emergents increases as number of paths 
per system state increases (i.e., 
complexity). 

System Structure = Multiple Paths Per 
System State 

Phenomena Indicator = Complexity 

J.H. Hol9 Applied concept to naturally occurring 
and human constructed things. 

System Domain =Natural (physical) ; 
Engineered (physical) 
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Source 

Identifier 

Reference  Abstract 

Al1- Al4 Alexander (1920)  New qualities unique to a group of things that does not 

belong to the things individually. 

As1 – As6 Ashby (1956)  System properties are not readily derivable/ explainable in 

terms of its parts. 

Ba1- Ba5. Bar-Yam (2004) A system property not captured by its parts 

Be1 – Be6 Bedau (1997)  Phenomena that is constituted by, yet autonomous from its 

underlying processes. 

Br1- Br3. Broad (1925) A quality belonging to the whole and not to its parts. 

Cr1 – Cr3. Crutchfield (1994) A property creating new  functionality within the system 

J.H. Hol1 - 

J.H. Hol9 

Holland, J.H.  (1998) Reoccurring patterns that are intrinsically difficult to explain 

Ki1 – Ki3. Kim (1999) Novel properties that seems to transcend their constituent 

parts 

Le1- Le5 Lewes (1875) Properties of wholes not traceable to interactions of 

dissimilar components. 

Ma1 - Ma5 Maier (2015) System functions that do not reside in any component. 

Mi1- Mi4 Mill (1846) Separate effects ≠ combined effects. 

Mo1- Mo3 Morgan (1929) Evolution of higher level configurations “so far” not 

deducible from the lower level parts. 

Table 21. Source Identifier Definition 
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Figure 21. Detailed Ontology of Emergence 
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mona Characterisitics 
Type

Qualities/Properties X X X X X X X X X X X X X
Behaviors X X X
Patterns X X
Structures X

Logical Reltionships
Explainable/Derivable X X X X
Not Explainable/Derivable X X X X
Theoretically Explainable/Derivable X X X X X X X X

Perspective
Intrinsic X X X X X X X X X X X
Extrinsic X X X X X

Indicator
New configurations X X
Complexity X X X
Nonlinearity X X X X
Uncertainty X X X X X
Information X X X X
Shannon Entropy X

m Characteristics 
Application Domain 

Engineered (physical) X X X X X X X X X X X X
Natural (physical) X X X X X X X X X X X X
Natutal (metaphysical) X X X X X

Structure
Coupled / Interconnected X X X X X X
Dissimilar size/complexity of parts vs system X
Dissimular Laws X
Dissimular Parts X
Governing Rules << Component Types X
Hierarchical X X X X X X X X
Learning/Adapability (∆ based on feedback vs goals) X
Multiple Component Types and Instances X
Multiple Paths Per System State X
Non-linear Interactions X X X X

Temporality
Synchronic X X X X X X X X X
Diachronic X X X X X X X

Knowledge Constraint
Experience/Observations X X X X
Observation Inaccessibility X
Information Density X
Visibility of Whole System X
Visibility of Coupling Relationships X
Modeling Capability X
Human Comprehension X X X X
Inherent Difficulty (iterative aggregations) X X
Inherent Difficulty (size of system state space) X
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B: THERMOCHEMISTRY CONCEPTS 

 

Thermochemistry is a branch of Thermodynamics, a science concerned with the 

transformation and transfer of heat and other types of energy during a change in the state 

of a system (Brown et al., 2014; Daintith, 2008; Linder, 2011).  It consists of axiomatic 

laws that govern the dynamics of changes in system components that are brought about 

by changes in system energy (Haddad et al., 2005).  Thermochemistry is the portion of 

thermodynamics that is concerned with the relationship between energy changes and 

chemical reactions.  Chemical reactions are an example of a thermodynamic process and 

offers a point from which thermochemical concepts can explored.   

By convention and supported by a variety of sources, the following summary of 

introductory definitions and concepts serve as a prerequisite for a more detailed 

discussion on the process of chemical reactions (Balmer, 2010; Brown et al., 2014; Harris 

et al., 2008; Ekambaram, 2013; Linder, 2011; Kumar, 2013; Rajaram, 2013) 

Chemical substance: A Chemical substance (or species) is composed of 

submicroscopic parts (molecules) that are connected in a specific configuration.   The 

ensemble of parts possesses distinct properties and characteristics: color, odor melting 

point, boiling point, flammability, etc.  The structure and properties of a substance do not 

vary regardless of the quantity (volume); state (solid, liquid, gas, and plasma); or shape 

(physical dimensions) that it is observed.   

Chemical system:  When one chemical substance is combined with another or 

with multiple substances, a chemical system is formed.  The new structure has macro 

level properties and characteristics that are not present in the properties of the chemical 
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substances from which it is composed.  The tangible component (i.e., matter) in chemical 

system are the molecules that compose each substance.  They also possess the intangible 

component of energy.   Systems can be classified based on how they interact with their 

environment in terms of sharing matter and energy: open systems exchange matter and 

energy with the environment; closed systems exchange energy but not matter; and 

isolated systems do not interact with their environment. 

Energy:  Energy is the capacity to make a change in an entity’s spatial position 

(the capacity to do work) or to change its temperature (the capacity to transfer heat).  A 

chemical substance gets its energy from its molecules which derived their energy from 

the behaviors of their atom and subatomic particles.   Some of the particles in the 

molecules have electrical charges (positive, and negative) where opposite charged 

particles are attracted and same charged particles are repelled.   The repulsion / attraction 

forces from the electrical charges cause the particles to move and collide with each other 

(i.e., that have kinetic energy).  The closer the particles are to each other the greater the 

repulsion / attraction forces and the greater their potential energies.  The internal energy 

(U) of a system is to sum of the kinetic and potential energies of its particles and 

molecules.   It is the energy required to form the system.  

1st Law of Thermodynamics:  The axiomatic law states that energy cannot be 

created or destroyed.  Also known as the conservation of energy, the 1st law of 

thermodynamics governs the energy change in a system.  A change in the system’s 

internal energy requires it to transfer energy to its environment or vice versa (see Figure 

22.). 
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Figure 22. Conservation of Energy 

 

Measuring internal energy is difficult.  However, the evidence of a change in internal 

energy is more readily available.   Internal energy (U) of the system is evidenced by the 

work (W) done on / by the system and /or the heat (Q) transferred to / from the system. 

The energy in the environment and the internal energy of a chemical system can increase 

or decrease, but the total energy of the chemical system plus the environment remains 

unchanged.  For chemical systems that exchange energy with their environments, the 

change in the system’s internal energy is sum of heat (Q) transferred to/from that system 

and work (W) done on/by the system.  The change in internal energy (U) is then given by 

equation [4.1].  

∆U = Q + W         [C.1] 

Chemical reaction: A chemical reaction is a process where the parts of chemical 

systems (the reactants) are separated by heat energy and then reassembled into a different 

configuration (the product).  The product of the reaction is a new chemical system with 

new properties that are different from the properties of the reactants (i.e., they are 

emergents). The parts (molecules) in a chemical system are held together by forces 
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(bonds). Energy is required to break the bonds between the parts of the reactants and to 

make new bonds between the reconfigured parts in the product.    The stronger the bonds 

are in the reactants, the greater the amount of energy that will be required to break them 

and form the product.   In order for the reaction to take place, there must be a sufficient 

change in the systems internal energy (U) to break the bonds that are holding the 

molecules of the reactant together.   

Enthalpy: Heat is a transfer of energy that causes a change in temperature. Heat is 

not contained in a system; it is a condition of energy exchange between systems and or 

their environment.  Enthalpy (i.e., “to warm”) is known by several names including heat 

content; heat function, and the total heat, where heat is a transfer of energy.   Enthalpy 

(H) is also the total energy of the system. It is similar to internal energy (U) in that both U 

and H include the energy to form the system.  They differ in that H include additional 

work energy required to displace or change its environment and U does not.  The 

additional work energy is the pressure (P) in the system that is applied to the change in 

the system’s volume (V).   

H = U + PV          [C.2] 

Many chemical systems occur under constant pressure and have negligible 

changes in volume.  When this is the case, the change in enthalpy (U) reduces to then 

heat transfer component of internal energy (U). 

∆H = ∆U= Q              [C.3] 

The change in enthalpy (H) is the heat energy (Q) transferred between a system and its 

environment at constant pressure. 
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Entropy: Entropy (S) is the amount of disorder or randomness in a system.  Order 

in a system is defined as predictability of system macro states of based on the 

configurations of system components (i.e., its microstates).  A change in the number of 

system macro states results in a change in the number of possible microstates.  If each 

microstate has an equal probability of occurrence, then system disorder (i.e., lack of 

predictability) is proportional to the number of microstates (W). Disorder can be 

measured using Boltzmann’s equation for entropy [C.4].    

S = k × ln (W)          [C.4] 

   ∆S = k × ln (Wfinal ÷Winitial) 

 Where, k (Boltzmann’s constant) =1.38 ×10-23J/K 

Equilibrium:    The state of the system when there are no changes in its properties 

over time is the state of thermodynamic equilibrium where there is: no change in its 

internal energy (thermal equilibrium); no change in its chemical composition or 

concentration (chemical equilibrium); and no work performed on or by the system 

(mechanical equilibrium).   Equilibrium is a special case of system steady state 

(sometimes known as dynamic equilibrium) where the properties of the system are 

changing but they are balanced with changes in opposite directions: transfer of energy in 

= transfer of energy out; forward reaction = reverse reaction; work done on the system = 

work done by the system.    Steady state condition is where the net change in the system’s 

properties over time is zero.  In both equilibrium and steady state, the systems is 

considered to be at rest. 

Spontaneity: Given a set of conditions, some chemical reactions are favored to 

occur or naturally evolve over time (i.e., they are spontaneous).  While the conditions can 
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be artificially created, the actual exchange of energy will naturally occur in one direction, 

if given enough time and no other interventions are made.  For example, ice will 

spontaneously absorb energy from the environment if the environment’s temperature is 

greater than that of the ice.  Unless there is some sort of interventions the ice will 

eventually melt and its state will change from solid to liquid and eventually to vapor.  

The same is true in the opposite direction for a hot cup of chocolate.  The heat from the 

liquid will transfer to its environment if the environment’s temperature is less than that of 

the liquid. Three important characteristics of spontaneous reactions are: 1) they only 

occur in one direction; 2) they are irreversible without the addition of more energy to 

force them in the opposite direction; 3) they tend toward a point of thermodynamic 

equilibrium.   

2nd Law of Thermodynamics: While the First Law of Thermodynamics requires 

that energy is conserved, it does not specify how energy flows such that conservation is 

maintained.  The Second Law of Thermodynamics complements the First Law by 

addressing the nature of the flow of energy in a system.   The axiomatic law states that 

energy spontaneously flows from the highest source of energy to the lowest: high heat to 

low heat; high pressure to low pressure; high potential to low potential. The flow of 

energy in spontaneous processes can result in either a positive or negative change in the 

entropy (disorder) for the system (∆S).  However, the change in total entropy for the 

universe (∆Suniv) is always positive.  The change in total entropy (∆Suniv) is the sum of the 

changes in entropy for the system (∆S) and the changes in entropy for the environment 

(∆Senvironment). 

∆Suniv = ∆S + ∆Senvironment > 0            [C.5] 
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Changing the number of possible microstates and consequently the entropy in a chemical 

systems occurs when there is a sufficient change in the system’s internal energy.  

Chemical reactions change the internal energy of a chemical system.   If the internal 

energy increases (increasing microstates, increasing entropy), the chemical reaction is 

endothermic.  If the internal energy decreases (decreasing microstates, decreasing 

entropy), the chemical reaction is exothermic.  
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C: MODEL DOCUMENTATION 

 
(01) Absorption Capacity= RANDOM UNIFORM (0.25, 0.5, Seed) 

 Units: Dmnl [0.01,1,0.001] 

  

(02) "Activation Information Threshold (Ia)"= (0.1*"Variety of Regulators 

(Vr)"^2+0.9)*"Initial Activation Information Threshold (Ia@t=0)" 

 Units: I Units 

  

(03) "Activation Ratio for Information (ARI)"=0.5 

 Units: Dmnl [0.5,1.5,0.01] 

  

(04) CC Multiple=0.2 

 Units: Dmnl [0.01,10,0.01] 

  

(05) "Change in Information (∆I)"=IF THEN ELSE(("Internal Information (I)"-"Initial 

Internal Information (Ii)")<0,0,"Internal Information (I)"-"Initial Internal 

Information (Ii)") 

 Units: I Units 

  

(06) "Component Concentration (Cc)"=0 

 Units: Dmnl [0,1,0.01] 

  

(07) "Degrees of Freedom (Df)"=0 

 Units: Dmnl [0,1,0.01] 

  

(08) Df Multiple=0.2 

 Units: Dmnl [0.01,20,0.01] 
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(09) "External Information (Ie)"= "Activation Ratio for Information (ARI)"*"Initial 

Activation Information Threshold (Ia@t=0)" 

 Units: I Units 

  

(10) FINAL TIME  = 5000 

 Units: Minute 

 The final time for the simulation. 

 

(11) "Fractional Reception Time (Rt)"= "Reception Xmission Multiple 

(RXM)"*"Fractional X-mision Time (Xt)" 

 Units: 1/Minute [0.01,10,0.001] 

  

(12) "Fractional X-mision Time (Xt)"=0.1 

 Units: 1/Minute [0.01,1,0.01] 

  

(13) "Information Differential (Id)"= INTEG (IF THEN ELSE("Information 

Differential (Id)"<=0,0,-"Reception Rate (Rr)") "External Information (Ie)"-

"Initial Internal Information (Ii)") 

 Units: I Units 

 Information available for reception by the system 

 

(14) "Information Ratio of Emergence (IRE)"= SAMPLE IF TRUE(PULSE TRAIN(0, 

TIME STEP , SAVEPER, FINAL TIME ):AND:"IRE (∆I/∆Itp)" >=1,1,0) 

 Units: Dmnl 

  

(15) "Information Tipping Point (∆Itp)"="Activation Information Threshold (Ia)"-

"Initial Internal Information (Ii)" 

 Units: I Units 
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(16) "Information Transferred (Ix)"= INTEG ("X-mission Rate (Xr)",0) 

 Units: I Units 

 Transmitted from the system and received by the environment 

 

(17) "Initial Activation Information Threshold (Ia@t=0)"=2000 

 Units: I Units [1000,5000,10] 

 Must be > Initial Internal Information (Ii) 

 

(18) "Initial Internal Information (Ii)"=1000 

 Units: I Units [100,5000,1] 

  

(19) INITIAL TIME  = 0 

 Units: Minute 

 The initial time for the simulation. 

 

(20) Int Multiple=0.2 

 Units: Dmnl [0.01,10,0.01] 

  

(21) "Internal Information (I)"= INTEG ("Reception Rate (Rr)"-"X-mission Rate 

(Xr)", "Initial Internal Information (Ii)") 

 Units: I Units 

 Total information in the system 

 

(22) "Interoperability (Int)"=0 

 Units: Dmnl [0,1,0.01] 

  

(23) "IRE (∆I/∆Itp)"=(("Change in Information (∆I)"/"Information Tipping Point 

(∆Itp)"))+IRE Noise 

 Units: Dmnl 
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(24) IRE Noise=IF THEN ELSE(IRE Pink Noise>MaxNoise,MaxNoise,IRE Pink 

Noise) 

 Units: Dmnl 

  

(25) IRE Pink Noise= RANDOM PINK NOISE(Mean Pink, Std Pink, Time Pink, 

"Seed (IRE)") 

 Units: Dmnl 

  

(26) "Ix Gap (Ig)"="External Information (Ie)"-"Initial Internal Information (Ii)" 

"Information Transferred (Ix)" 

 Units: I Units 

  

(27) MaxNoise=0.99975 

 Units: Dmnl [0.1,1,0.01] 

  

(28) Mean Pink=0 

 Units: Dmnl [-1,1,0.0001] 

  

(29) "Reception Rate (Rr)"=IF THEN ELSE("Information Differential 

(Id)"<=0,0,"Internal Information (I)"*(1-"Internal Information (I)"/("Internal 

Information (I)"+"Information Differential (Id)"))*(EXP(1*CC 

Multiple*"Component Concentration (Cc)")*(1*Df Multiple*"Degrees of 

Freedom (Df)"+1)*EXP(1*Int Multiple*"Interoperability (Int)"))*"Fractional 

Reception Time (Rt)"/1000) 

 Units: I Units/Minute 

  

(30) "Reception Xmission Multiple (RXM)"=1 

 Units: Dmnl [1,5,0.01] 
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(31) SAVEPER  = 250 

 Units: Minute [0,1000,25] 

 The frequency with which output is stored. 

 

(32) Seed=0 

 Units: Dmnl 

  

(33) "Seed (IRE)"=0 

 Units: Dmnl 

  

(34) Std Pink=0.5035 

 Units: Dmnl [0.01,2,0.0001] 

Best 2nd Order Fit = 0.5035 (1458 sample;w/time =.13;SAVEPER  =250 ) Best 

3rd Order Fit = 0.2775 (1458 sample;w/time =.13;SAVEPER =250) Variables in 

the sensitivity simulation setup are listed in alphabetical order after the IRE seed. 

Results impacted by order. Variables are randomly shuffled based on initial order. 

 

(35) Time Pink=0.13 

 Units: Minute [0.01,5,0.01] 

  

(36) TIME STEP  = 0.25 

 Units: Minute [0,?] 

 The time step for the simulation. 

 

(37) "Variety of Regulators (Vr)"=1 

 Units: Dmnl [0.1,1,0.01] 
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(38) "X-mission Rate (Xr)"= IF THEN ELSE("Internal Information (I)"<="Initial 

Internal Information (Ii)",0,IF THEN ELSE("Information Ratio of Emergence 

(IRE)"<1,"Ix Gap (Ig)", IF THEN ELSE("Internal Information (I)"<="Initial 

Internal Information (Ii)" *(1+Absorption Capacity),0,"Internal Information 

(I)"*("Internal Information (I)"-"Initial Internal Information (Ii)"*(1-Absorption 

Capacity))/"Initial Internal Information (Ii)")))*"Fractional X-mision Time 

(Xt)"/1000 

  

Units: I Units/Minute 

   

  



www.manaraa.com

188 

 

 

D: VERIFICATION AND VALIDATION DATA 

 

Figure 23. Model Check 

 

 

Figure 24. Unit Check 
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Figure 25. Causal Tree / Use Tree: Information Differential (Id) 

 

 

 

Figure 26.  Causal Tree and / Use Tree: Reception Rate (Rr) 
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Figure 27. Causal Tree and / Use Tree: Internal Information (I) 
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Figure 28. Causal Tree and / Use Tree: X-mission Rate (Xr) 

 

 

 
 

Figure 29. Causal Tree and / Use Tree: Information Transferred (Ix) 
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Figure 30. Causal Tree and / Use Tree: Information Ratio of Emergence (IRE) 
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E: DESIGN OF EXPERIMENTS 

E.1 Variables and Assumptions  

The independent and dependent variables in the experiments are defined as 

follows: 

Dependent Variable.   The Information Ratio of Emergence (IRE) is an indicator 

that there has been a sufficient change in the system’s Information (∆I) to cause an 

emergent effect.   A sufficient change would be Maximum ∆I > than the Information 

Tipping Point (∆Itp).  From section 5.3, the transition to emergent effects in engineered 

system is defined by the IRE dependent variable.   

IRE = ∆I ÷ ∆Itp          [5.2] 

As ∆I approaches ∆Itp, the ratio will approach 1.  If IRE ≥ 1 emergent effects will occur.    

Independent Variables.  There are three variables that remain constant throughout 

the experiment: X-mission Time (Xt); Initial Internal Information (Ii); and Initial 

Activation Information Threshold (Ia@t=0).   The impact of these variables is explained 

by the derivation for equation [5.4] which shows how: Activation Ratio for Information 

(ARI) includes the effect of Ia@t=0 and Ii; and X-mission Time (Xt) is captured in the 

Reception/X-mission Multiple (RXM).    The remaining independent variables are the six 

experiment factors in the IRE tuple.   

IRE [ARI, RXM, Df, Cc, Int, Vr]                           [5.6] 

The independent variables (i.e., factors) and their levels are listed in Table 22.    
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Factor Low (-) Nominal (0) High  (+) 

Activation Ratio for Information (ARI) .5 1  1.5 

Reception/X-mission Multiple (RXM) 1 3 5 

Degrees of Freedom  (Df) 0 .5 1 

Component Concentration (Cc) 0 .5 1 

Interoperability  (Int) 0 .5 1 

Variety of Regulators (Vr) 0 .5 1 

Table 22. Independent Variables 

 

Assumptions.   Values were selected for each of the initial value constants in order 

to initialize the simulation. The values remain constant throughout the simulation: X-

mission Time (Xt) = .10 minutes; Initial Internal Information (Ii) = 1000 information 

units (I-Units); and Initial Activation Information Threshold (Ia@t=0) = 2000 

information units (I-Units). 

 

E.2 Monte Carlo Experiment Design 

Sampling.  Monte Carlo experiments estimate the value of a dependent variable 

by examining samples from its distribution at random values of the independent 

variables.  One of the recommended approaches for determining samples size in Monte 

Carlo simulations is based on the Central Limit Theorem (Driels & Shin, 2004; Oberle, 

2015).  The Central Limit Theorem (CLT) basically states that as the sample size 

increases, the sample distribution is approximately normal and the mean of the sample 
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distribution approaches the mean of the actual distribution (Albright et al., 2010).   The 

sample size for Monte Carlo experiments based on CLT is determined by [6.5]  

n = ((z × σ estimate) ÷B) 2      [6.5] 

Where: 

z = Standard normal distribution multiple for the confidence level  

σestimate = Estimate of dependent variable standard deviation  

B = Half-length of the confidence interval 

The modeling questions are related to detecting IRE >=1. Therefore, we are 

interested in the maximum value for IRE.   An estimate for the standard deviation for 

Max IRE is made by randomly varying the independent variables in Table 13 for 100 

simulation runs over an extended time period (50,000 minutes).  The IRE distribution is 

depicted in Figure 31, and the maximum IRE for each simulation run is depicted in 

Figure 32. 

 

 

 

Figure 31. IRE Distribution 
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Figure 32. Max IRE  

 

 

The standard deviation is estimated to be .273.  The minimum sample size (n) for 

estimating IRE with 95% confidence level and a confidence interval of +/5% is:  

n = ((1.96 ×.273) ÷5%) 2 = 115 

Based on the sample size estimate each Monte Carlo simulation will run for 115 

iterations. 
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